Review Session I
CS 466

Wei Qian
March 12th 2018
Topics we have covered:

- Molecular Biology
- Probability and Statistics
- Sequence and Alignment
- Pattern Matching
- BLAST
- Assembly
Definition: 4.2 **Probability distribution** of a discrete random variable

The probability distribution of a discrete random variable is the set of numbers $P(\{X = x\})$ for each value x that X can take. The distribution takes the value 0 at all other numbers. Notice that the distribution is non-negative. **Notation warning:** probability notation can be quirky. You may encounter $p(x)$ with the meaning “some probability distribution” or $p(x)$ meaning “the value of the probability distribution $P(\{X = x\})$ at the point x” or $p(x)$ with the meaning “the probability distribution $P(\{X = x\})$”. Context may help disambiguate these uses.
Definition: 4.4 **Joint probability distribution** of two discrete random variables

Assume we have two random variables \(X \) and \(Y \). The probability that \(X \) takes the value \(x \) and \(Y \) takes the value \(y \) could be written as \(P(\{X = x\} \cap \{Y = y\}) \). It is more usual to write it as

\[
P(x, y).
\]

This is referred to as the **joint probability distribution** of the two random variables (or, quite commonly, the **joint**). You can think of this as a table of probabilities, one for each possible pair of \(x \) and \(y \) values.
Definition: 4.6 The **marginal** probability of a random variable

Write $P(x, y)$ for the joint probability distribution of two random variables X and Y. Then

$$P(x) = \sum_y P(x, y) = \sum_y P(\{X = x\} \cap \{Y = y\}) = P(\{X = x\})$$

is referred to as the **marginal** probability distribution of X.
Definition: 4.8

Expected value

Given a discrete random variable X which takes values in the set \mathcal{D} and which has probability distribution P, we define the expected value

$$
\mathbb{E}[X] = \sum_{x \in \mathcal{D}} x P(X = x).
$$

This is sometimes written $\mathbb{E}_P[X]$, to clarify which distribution one has in mind.
Useful Facts: 4.2 *Expectations are linear*

Write f, g for functions of random variables.

- $\mathbb{E}[0] = 0$
- for any constant k, $\mathbb{E}[kf] = k\mathbb{E}[f]$
- $\mathbb{E}[f + g] = \mathbb{E}[f] + \mathbb{E}[g]$.

Definition: 4.13 \textbf{Variance}

The variance of a random variable X is

$$\text{var}[X] = E[(X - E[X])^2]$$

Useful Facts: 4.4 \textit{A useful expression for variance}

$$\text{var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
$$= \mathbb{E}[(X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2)]$$
$$= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[X] + \mathbb{E}[X]^2$$
$$= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
Useful Facts: 4.3 Properties of variance

1. For any constant k, $\text{var}[k] = 0$
2. $\text{var}[X] \geq 0$
3. $\text{var}[kX] = k^2 \text{var}[X]$
4. If X and Y are independent, then $\text{var}[X + Y] = \text{var}[X] + \text{var}[Y]$
5. $\text{var}[X] = \text{cov}(X, X)$.

1, 2, and 5 are obvious. You will prove 3 and 4 in the exercises.
Useful Facts: 4.6 **Independent** random variables have zero covariance

1. if X and Y are independent, then $E[XY] = E[X]E[Y]$.
2. if X and Y are independent, then $\text{cov}(X, Y) = 0$.

If 1 is true, then 2 is obviously true (apply the expression of useful facts 4.5). I prove 5 below.
Definition: 2.1 *Correlation coefficient*

Assume we have N data items which are 2-vectors $(x_1, y_1), \ldots, (x_N, y_N)$, where $N > 1$. These could be obtained, for example, by extracting components from larger vectors. We compute the correlation coefficient by first normalizing the x and y coordinates to obtain $\hat{x}_i = \frac{x_i - \text{mean}\{x\}}{\text{std}(x)}$, $\hat{y}_i = \frac{y_i - \text{mean}\{y\}}{\text{std}(y)}$. The correlation coefficient is the mean value of $\hat{x}\hat{y}$, and can be computed as:

$$\text{corr} \left(\{(x, y)\} \right) = \frac{\sum_i \hat{x}_i \hat{y}_i}{N}$$

What does 0 coefficient imply?
What is the relationship between correlation and causality?
Global: Require an end-to-end alignment of x, y

Semi-global (glocal): Gaps at the beginning or end of x or y are free — useful when one string is significantly shorter than the other or for finding overlaps between strings.

Local: Find the highest scoring alignment between x' a substring of x and y' a substring of y — useful for finding similar regions in strings that may not be globally similar.
Sequence and Alignment

Global Alignment

$$OPT(i, j) = \max \begin{cases}
\text{score}(x_i, y_j) + OPT(i - 1, j - 1) \\
sgap + OPT(i - 1, j) \\
sgap + OPT(i, j - 1)
\end{cases}$$

Local Alignment

$$OPT(i, j) = \max \begin{cases}
\text{score}(x_i, y_j) + OPT(i - 1, j - 1) \\
sgap + OPT(i - 1, j) \\
sgap + OPT(i, j - 1) \\
0
\end{cases}$$
Global Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>O</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Global Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>O</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Global Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>O</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Global Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>O</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Global Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>O</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

DDOGC

D-OG-
Global Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-10</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>O</td>
<td>-4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-6</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Local Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Local Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Local Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Local Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Local Alignment: DDOGC vs DOG

+1 Match; -1 Mismatch; -2 Gap.

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>D</th>
<th>D</th>
<th>O</th>
<th>G</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Alignment:

```
-DOG-
```

Sequence:

```
DDOGC
```

Match:

```
D
```

Mismatch:

```
O
```

Gap:

```
G
```
Global vs. Semi-Global

Global

\[
\text{OPT}(i,j) = \max \begin{cases}
\text{score}(x_i, y_j) + \text{OPT}(i-1, j-1) \\
\text{s}\text{gap} + \text{OPT}(i-1, j) \\
\text{s}\text{gap} + \text{OPT}(i, j-1)
\end{cases}
\]

Base case: \(\text{OPT}(i,0) = i \times \text{s}\text{gap} \)

Traceback starts at \(\text{OPT}(n,m) \)

Semi-global (“fitting”)

\[
\text{OPT}(i,j) = \max \begin{cases}
\text{score}(x_i, y_j) + \text{OPT}(i-1, j-1) \\
\text{s}\text{gap} + \text{OPT}(i-1, j) \\
\text{s}\text{gap} + \text{OPT}(i, j-1)
\end{cases}
\]

Base case: \(\text{OPT}(i,0) = 0 \)

Traceback starts at \(\max_{0<j \leq n} \text{OPT}(j,m) \)
Complexity?
Complexity?

<table>
<thead>
<tr>
<th></th>
<th>Time:</th>
<th>Space:</th>
<th>Backtrace</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$O(nm)$</td>
<td>$O(nm)$</td>
<td>$O(n+m)$</td>
</tr>
</tbody>
</table>
Sequence and Alignment

Scoring function and BLOSUM matrix

\[c_{AB} = \sum_i c_{AB}^{(i)} \quad T = \sum_{A \geq B} c_{AB} \quad q_{AB} = \frac{c_{AB}}{T} \quad p_A = q_{AA} + \sum_{A \neq B} q_{AB} \]

\[e_{AB} = \begin{cases} (p_A)(p_B) = (p_A)^2 & \text{if } A = B \\ (p_A)(p_B) + (p_B)(p_A) = 2(p_A)(p_B) & \text{otherwise} \end{cases} \]

score = log odds ratio = \[s_{AB} = \text{Round} \left(\frac{1}{\lambda} \log_2 \left(\frac{q_{AB}}{e_{AB}} \right) \right) \]

rounding factor
Affine Gap Penalty

\[g_{start} = \text{the cost of starting a gap} \]
\[g_{extend} = \text{the cost of extending a gap by one more space} \]
\[g_{score}(k) = g_{start} + (k-1) \times g_{extend} \]
Pattern Matching

Goal: Given a set of patterns and a text, find all occurrences of any of patterns in text

Input: k patterns \(p^1, \ldots, p^k \), and text \(t = t_1 \ldots t_m \)

Output: Positions \(1 \leq i \leq m \) where substring of \(t \) starting at \(i \) matches \(p_j \) for \(1 \leq j \leq k \)

Motivation: Searching database for known multiple patterns
Pattern Matching

Naive Approach

- K: number of patterns
- N: average length of pattern
- M: length of the query string

Running Time:

$O(KMN)$
Pattern Matching

Keyword Tree

- K: number of patterns
- N: average length of pattern
- M: length of the query string

Running Time:

$O(\text{KN} + \text{NM})$
Pattern Matching

Aho-Corasick

- K: number of patterns
- N: average length of pattern
- M: length of the query string

Running Time:

$$O(KN + M)$$
Aho-Corasick

One more example:

Preprocessing (Hash Index)

\[
\begin{align*}
\text{ATC} & \overset{h}{\rightarrow} \text{address1} & \overset{\text{retrieve}}{\rightarrow} & \{1,6,100,2000,5454, \ldots, \} \\
\text{AAA} & \overset{h}{\rightarrow} \text{address2} & \overset{\text{retrieve}}{\rightarrow} & \{15,21,30,785,3434, \ldots, \} \\
\text{TTC} & \overset{h}{\rightarrow} \text{address3} & \overset{\text{retrieve}}{\rightarrow} & \{5,164,220,502,943, \ldots, \}
\end{align*}
\]
1st. List possible match for the short word

The parameters w & T
2nd. Find the possible matching sequences
3rd. Extend and score the match

\[HSP = \text{High Scoring Segment Pair} \]
Statistic for choosing S

- Sequence DB
- Hits list
 - Score A
 - Score B
- EVD
- Random DB (smaller)

Score A: is significant
Score B: is NOT significant

p-value = 0.45 p-value = 0.001
P-value and E-value

In a database of size N: $P \times N = E$

- **P-value:**
 Probability that an alignment with this score occurs by chance in a database of size N.
 The closer the P-value is towards 0, the better the alignment

- **E-value:**
 Number of matches with this score one can expect to find by chance in a database of size N.
 The closer the E-value is towards 0, the better the alignment
Shortest Common Superstring

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCAATTTTT
CTCGGCTCTAGGCCCTCAATTTTT
TATCTCGACTTATGGCCCTCA
TATCTCGACTTATGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCTATATCT
GGCGTCTATATCT
Overlap Graph

Imagine a modified overlap graph where each edge has cost \(- (\text{length of overlap})\).

SCS corresponds to a path that visits every node once, minimizing total cost along path.

That's the Traveling Salesman Problem (TSP), which is **NP-hard**!
Assembly

de Bruijn Graph

AAABBBA

take all 3-mers: AAA, AAB, ABB, BBB, BBA

form L/R 2-mers: AA, AA, AA, AB, AB, BB, BB, BB, BB, BB, BA
Assembly

de Bruijn Graph
Eulerian Path

(a)

(b)

(c)
Eulerian Path

- Need to add an edge to connect the two semi-balanced nodes (if there are ones)
- Complexity?
 - $O(|E|)$
- In exam?
 - Observable
- Pseudo Code:

```python
# Make all nodes balanced, if not already
tour = []
# Pick arbitrary node
src = g.iterkeys().next()

def __visit(n):
    while len(g[n]) > 0:
        dst = g[n].pop()
        __visit(dst)
        tour.append(n)

__visit(src)
# Reverse order, omit repeated node
tour = tour[::-1][:-1]

# Turn tour into walk, if necessary
```
Good luck!