

Worm enabling exploits

Cyber Security Lab
Spring ‘10

Background reading

• Worm Anatomy and Model
– http://portal.acm.org/citation.cfm?id=948196

• Smashing the Stack for Fun and Profit
– http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

• The Shellcoder’s Handbook
– At the library

http://portal.acm.org/citation.cfm?id=948196
http://www.phrack.com/issues.html?issue=49&id=14&mode=txt

More Reading
• Steve Hanna’s Shellcode page

– http://vividmachines.com/shellcode/shellcode.html

• Once Upon a Free()
– http://www.phrack.org/issues.html?issue=57&id=9&mode=txt

http://vividmachines.com/shellcode/shellcode.html
http://vividmachines.com/shellcode/shellcode.html
http://www.phrack.org/issues.html?issue=57&id=9&mode=txt

Outline

• Review worm structure
• Examine exploited vulnerabilities

– Buffer Overflow
– Return to Libc
– Format String exploits
– Heap Overflow

What is a Worm?
• An autonomous process that can cause a copy of itself

(or a variant) to execute on a remote machine.
• Various Goals

– Install trojan’s for later access
– Install zombies for later DDoS or other activities
– Install spies for information gathering
– Personal fame

• Generally varies from a virus in that it propagates
independently.
– A virus needs a host program to propagate.
– But otherwise, many of the issues between worms and virus are

the same

Life Cycle of a Worm
• Initialization:

– Install software, understand the local machine
configuration

• Payload Activation:
– Activate the worm on the current host

• Network Propagation:
– Identify new targets and propagate itself
– The cycle starts all over on the newly infected

devices

Network Propagation in More Detail

• Target Acquisition: Identify hosts to attack.
– Random address scans (Code Red) or locality biased (Nimda)
– Code Red v2 effectiveness changed based on good seeding

• Network Reconnaissance: Determine if the target is
available and what is running on it

• Attack: Attempt to gain root access on the target
– Traditionally this has been buffer overflow
– Can also attack other weaknesses like weak passwords

• Infection: Leverage root access to start the Initialization
phase on the new host

Example Worm: LION
• Active around 2001
• Three versions
• Not a particularly effective worm

– Uses a BIND exploit that attacks the “named” daemon
• Not activated on default RedHat 6.2 installations
• Administrator would have to explicitly add to inetd table and

run as root
• Variant of the earlier worms

– ADMworm, Millenium Worm, Ramen worm

Lion Life Cycle
• Attempts connection to TCP port 53 on

candidate target hosts
– Selects random class B network blocks to scan

• If target responds, send malformed UDP
IQUERY packet to UDP port 53
– Used to determine if target is running vulnerable

version of Linux running BIND 8
• If vulnerable, send overflow packet

– Attack code walks file descriptor table of exploited
process to find FD of initial TCP connection

– Duplicates FD to stdin, stdout, stderr
– Spawn /bin/sh running at root

Lion Life Cycle Continued

• Now can use original TCP connection as
control channel to send shell commands
– Download and install software

• Versions 1 and 2 download from fixed site
• Version 3 uses Ramen distribution code to

download from infecting host
– Send password files to central location for

later analysis
– Cover tracks. Erase logs and temporary files

Buffer Overflow Exploits

• Write too much data into a stack buffer
– Replace return address on the stack with

address of attack code
– Generally attack code attempts to start a shell

• If process is SetUID root, shell will be root
• Attack code is often in the buffer

Stack Structure

Function
Arguments
(a)

Return
Address

Saved
Frame Ptrvoid func(char *a) {

 char buffer[512];
 strcpy(buffer, a);
 ….
 }

High address

Low address

Previous
frames

Buffer[512]

Stack
Ptr

Frame
Ptr

Shell Code
• Insert code to spawn a shell
• Phrack article discusses how to do this from first

principles
– Create assembly code to exec /bin/sh
– Use GDB to get hex of machine code
– Rework assembly as necessary to avoid internal 0’s

• Could break attack if strcpy is used by attack target
• Will result in a hex string like:

– “\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x4
6\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x
80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/
sh”

Structure of Buffer
• Buffer more than 512 bytes will replace other

information on the stack (like return address)
• Problem is determining absolute address in

buffer to jump to and ensuring you replace the
return address
– Pad with leading NOPs and trailing return addresses
– Then your guesses on the stack structure do not need

to be exact

NOPs Shell Code Return Address Replacements

Copied Stack

Function
Arguments

Return
Address

Saved
Frame Ptr

Previous
frames

Buffer[512]

N copies of
Address X

Previous
frames

NOPs

Shell
Code

Address X

Calculating New Return Address

• If you have source
– Use GDB to find stack address at appropriate invocation

• GDB reporting may not be accurate, might take several guesses
– Use Eggshell program

• Approximate target program
• Takes buffer size and offset arguments
• Computes candidate buffers
• Emits buffers in environment variable named EGG
• Creates new shell on the way out so EGG is available after program

has completed
• If you don’t have source

– Brute force?
– Examination of core files or other dumps

Return to libc

• Make stack non-executable to protect from
buffer overflow
– Newer windows feature
– Feature in some flavors of Unix/Linux

• Adapt by setting the return address to a
known library
– Libc is home to nice functions like system,

which we can use to spawn a shell.

Return to Libc Stack

Function
Arguments

Return
Address

Saved
Frame Ptr

Previous
frames

Buffer[512]

Y

X – new
frame ptr

Previous
frames

Buffer[512] Libc
Segement

system()

exit()

X

Z – new return

ptr to /bin/sh

Y

Z

Frame
Ptr

Protections
• No execute bit
• Address space randomization
• Canaries
• Use type safe languages
• Avoid known bad libraries

Address Space Randomization
• Vary the base stack address with each

execution
– Stack smashing must have absolute address to over

write function return address
– Enabled by default in some linuxes (e.g., FC3)

• Wastes some address space
– Less of an issue once we have 64 bit address space

• Not absolute
– Try many times and get lucky

• Does not help return to libc or heap overflows

Tools for Buffer Overflow Protection

• LibSafe
– http://www.research.avayalabs.com/project/libsafe/
– Intercept calls to functions with known problems and

perform extra checks
– Source is not necessary

• StackGuard and SSP/ProPolice
– Place “canary” values at key places on stack

• http://en.wikipedia.org/wiki/Stack-smashing_protection
– Terminator (fixed) or random values
– ProPolice patch to gcc

http://www.research.avayalabs.com/project/libsafe/
http://www.research.avayalabs.com/project/libsafe/
http://www.research.avayalabs.com/project/libsafe/
http://en.wikipedia.org/wiki/Stack-smashing_protection

LibSafe

Function
Arguments

Return
Address

Saved
Frame Ptr

Previous
frames

Buffer[512]

Frame Pointer

Uses LD_PRELOAD to intercept all
“dangerous” calls.
Use Frame pointer and buffer address to
detect corruption of stack

Target
Buffer

Canary Values

Function
Arguments

Return
Address

Saved
Frame Ptr

Previous
frames

Buffer[512]

N copies of
Address X

Previous
frames

NOPs

Shell
Code

Address X

Canary

Non-Executable Stack

• Set page as non-executable
– Supported by newer AMD and x86 chips
– Supported by some OS’s

• Does not protect against return to libc or
heap attacks.

Format String Errors

• What is a format string?
– printf(“Foo 0x%x %d\n”, addr, count);

• What happens if the arguments are
missing?
– printf(“Foo 0x%x, %d\n”);

• What if the end user can specify his own
format string?
– printf(fmtstring)

Information Disclosure

• By specifying arbitrary %x’s (or %d’s) you
can read the stack
– Made easier by direct parameter access
– “%128\$x” – print the 128’th argument as a

hex
• Looking at the stack you can see the

address to your own format string

Reading arbitrary addresses
• You can load an address into the first 4

bytes of your format string
• If you know the offset of the format string

on the stack, use %s to read the string
starting at that address
– formatstr = $’\x55\x4d\x06\x08%272$s’;
– printf(formatstr)

• So, we leak information, but printf is read
only, right?

Writing data with printf
• The %n parameter writes the number of bytes

written so far by printf to the corresponding int *
pointer

• Kind of awkward, but does enable the dedicated
fiddler to write arbitrary data at arbitrary
locations
– Only writes one byte at a time

• Likely targets
– Return addresses
– Data, like terminating passwords we are checking
– Global Offset Table (GOT) – library function pointer

table

Format string errors easily avoided

• Never accept raw format strings from end
user
– Never allow

• printf(buf)
– Instead do

• printf(“%s”, buf);

Heap overflows

• Gain control by overflowing heap allocated
buffer

• Heap imposes additional structure on
large blocks of memory given by OS

• Control structures intermingled with user
data in heap memory
– Specific attacks very dependent on details of

particular malloc implementation

Example Structure

0

Cur size + flag

Data

Returned
Ptr to mem

Allocated
Chunk

Cur size + flag

Unused
Space

Returned
Ptr to mem

Freed
Chunk

Prev size

Next Ptr

Prev Ptr

Control Memory Through Free
0

Cur size + flag

Data

0

Cur size + flag

Data

buf2

buf1

0

Cur size + flag

Data

0xFFFFFFF

0xFFFFFF0 buf2

buf1

fd
bk

Exploiting Heap Control
Structure

• Overwrite into the next “free” block
• Set or unset low bit of size to control path

through free
– Unlink will use the first two words in the

memory to remove itself from linked list.
– You can put any memory address there, e.g.

Stack return location, and control broader
execution flow.

Poison buffer

Jmp, 2 padding Shell code 0xFFFFFF
FC

0xFFFFFF
FC Retloc - 12 Retaddr

Chunk Boundary

Retaddr

Heap attack protections
• Randomization could help use here too.

– DieHard (DH) Memory Allocator
– http://prisms.cs.umass.edu/emery/index.php?page=diehard

http://prisms.cs.umass.edu/emery/index.php?page=diehard

Summary
• Worms rely on exploits of networked

services
– Goal: get a shell started at high privilege
– Even shell at low privilege gives attacker a

foothold to attack locally
• Exploits need to write specific data and

specific addresses
– Trick data structures
– Use mechanisms in unexpected ways

