
04/15/10 Cyber Security Lab 1

Web Security

Cyber Security Lab
Spring '10

04/15/10 Cyber Security Lab 2

Outline
 Web application weaknesses

− XSS
− AJAX weaknesses

 SQL Injection Attacks
− (Slides from Lars Olson)
− http://www.cs.uiuc.edu/class/fa07/cs461/slides/DBSecurity.ppt

http://www.cs.uiuc.edu/class/fa07/cs461/slides/DBSecurity.ppt

04/15/10 Cyber Security Lab 3

The Web as a Ripe Target
 Attack targets

− Client browser/machine
 Install adware
 Email address book
 Bank information displayed in browser

− Web server
 Infect pages to be served to others, e.g. Knoppix

− Backend server
 Grab valuable customer data

04/15/10 Cyber Security Lab 4

Attack Tools
 Used to be HTML, CGI and Java
 Now Javascript and AJAX

− Active content which may not be apparent
− Script access to current page (DOM)
− Ability to make additional HTTP requests

 SQL injections to attack the backend

04/15/10 Cyber Security Lab 5

Cross Site Scripting (XSS)
 Goal – Inject malicious code into web pages

viewed by others.
 Cross site a bit of a misnomer.

− Term applies to general injection of malicious script
 Three types
 Wikipedia reference

− http://en.wikipedia.org/wiki/Cross_site_scripting

http://en.wikipedia.org/wiki/Cross_site_scripting

04/15/10 Cyber Security Lab 6

Type 2 XSS
 Type 2 – Stored or persistent

− User entered data is stored
− Later used to create dynamic pages
− Very powerful attack

 Examples
− Sites that allow HTML formatted user input, e.g.

Blog comments, wiki entries.

04/15/10 Cyber Security Lab 7

Second Order XSS
 Combine type 2 attack with social engineering
 Sign up for an account

− Enter exploit script in address field
 Call help desk

− Display your record
− Launch from the inside

04/15/10 Cyber Security Lab 8

Type 1 XSS
 Type 1 – Non-persistent or reflected

− User enters data. Server uses data to dynamically
create page, e.g. Search engine

− Generally attacking self, but could be tool for social
engineering.

 E.g., enter the following into a form that then
shows the original query in the response.

− <script>confirm("Do you hate purple dinosaurs?");</
script>

04/15/10 Cyber Security Lab 9

Type 0 XSS
 Type 0 -DOM-based or Local

− Very similar to Type 1 except the actual script is
passed argument and parsed on client side only

− Server processing cannot fix the problem
− Again self attack. Likely invoked through phishing

link, email HTML rendering, or hidden link in main
page.

04/15/10 Cyber Security Lab 10

Type 0 XSS
 Consider

− <HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Welcome to our system…</HTML>

 Invoke as
− http://vulsystem.com/welcome.html?name=Bob

− http://vulsystem.com/welcome.html?
name=<script>alert(document.cookie)</script>

http://vulsystem.com/welcome.html?name=Bob

04/15/10 Cyber Security Lab 11

Input Cleansing
 Ensure that the user is providing the type of

information you are expecting.
− No HTML tags in blog comments
− Perform escaping of all special characters

 Mozilla and “get” arguments
 Could defeat by alternative encodings

04/15/10 Cyber Security Lab 12

Example MySpace Exploit
 Samy Worm – October '05

− Person views infected myspace page
− Executes javascript exploit

 Adds Samy to viewer's hero list
 Adds infection to viewer's myspace page

− http://namb.la/popular/tech.html - Technical
explanation apparently from Samy

 Many cases of tediously finding alternative ways of
expressing javascript components

http://namb.la/popular/tech.html

04/15/10 Cyber Security Lab 13

Newer Exploits
 Quicktime worm – December '06

− Blank movie provides hook to execute malicious
script

− Script redirects to phishing page that looks like
myspace login page

− http://www.securityfocus.com/brief/375
Koobface virus on MySpace and Facebook
See link to movie. Movie requires flash update

(really virus)

http://www.securityfocus.com/brief/375

04/15/10 Cyber Security Lab 14

Multi-Encoding Techniques
 Trick system into incorrectly processing “special

characters”
− US-ASCII
− Unicode encodings - UTF-8 or UTF-16
− ISO 8859-n

 Different prefixes for different languages
 Multiple ways of encoding the same character

 Multiple ways of encoding and IP address
− 192.168.1.1 or C0.A8.1.1 or 3232235777

04/15/10 Cyber Security Lab 15

Cleansing Options
 Improve input cleansing in code
 Web firewall

− Hosting solution
 Web proxy

− Client solution
 A couple packages

04/15/10 Cyber Security Lab 16

Web security packages
 Pen test tools and proxies

− Web Scarab
 http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

− BURP
 http://www.portswigger.net/suite/

 Web application firewall (WAF)
– Imperva WAF - http://www.imperva.com/waf/
– WAF Evaluation Criteria

http://www.webappsec.org/projects/wafec/

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.portswigger.net/suite/
http://www.imperva.com/waf/
http://www.webappsec.org/projects/wafec/

04/15/10 Cyber Security Lab 17

Play with Flawed Web Sites
 Examine missions to discover and exploit each

web sites flaw
− http://www.hackthissite.org/missions/

04/15/10 Cyber Security Lab 18

AJAX
 Allows JavaScript to request additional data

− Dynamically update part of page
 XmlHttpRequest (XHR) is the key class

− http://www.w3.org/TR/XMLHttpRequest/
− Generally used to pull new information or send

information

http://www.w3.org/TR/XMLHttpRequest/

04/15/10 Cyber Security Lab 19

Same origin policy
 Script can only make requests to the domain of

its original source
 Script can only access document it fetched
 Bound what sneaky scripts can access
 Could avert

− Signed scripts
− ActiveX/Java proxies
− Trusted security zones

04/15/10 Cyber Security Lab 20

Mashups
 Combine data from two sources in one new

groovy page
− E.g., Google map data plus address information

from corporate directory
− Create personal desktop by combining scripts from

multiple sources
 What if you include my “magic 8” service in your

desktop?

04/15/10 Cyber Security Lab 21

Mashup restrictions
 In general cross domain communication

forbidden by same origin policy
 Ad Hoc workarounds

− Proxy, iframes, dynamic script creation
 New mashup explicit standards being

developed

04/15/10 Cyber Security Lab 22

Data Harvesting
 XML or JSON data offered via HTTP

− Intended as target for AJAX apps
− Could be accessed directly

 Fetching entire data set may be undesirable
− Load on server
− Possibility of competitor leveraging your data

collection work
 Introduce throttling or metering mechanisms

04/15/10 Cyber Security Lab 23

Web Services
 Standards for enabling machine to machine

communication over the web.
− Web Service Standards - WS-*

 Many thoroughly defined standards
 Generally encoded through XML and SOAP
 Perceived as very heavy weight

− Representational State Transfer – RESTful web
services

 Just use simple set of HTTP operations GET, PUT, and
DELETE

04/15/10 Cyber Security Lab 24

SQL Injections

• http://xkcd.com/327/

http://xkcd.com/327/

04/15/10 Cyber Security Lab 25

Disclaimer!!

 Do not use your powers for evil.
 The purpose of showing these attacks is

to teach you how to prevent them.
 Established e-commerce sites are

already hardened to this type of attack.
 You might cause irreparable harm to a

small “mom-and-pop” business.
 Even if you don’t, breaking into someone

else’s database is illegal and unethical.

04/15/10 Cyber Security Lab 26

Characterization of Attack

 Not a weakness of SQL
− ...at least in general
− SQL Server may run with administrator privileges,

and has commands for invoking shell commands
 Not a weakness of database, PHP/scripting

languages, or Apache
 Building executable code using data from an

untrusted user
− Perl taint mode was created to solve a similar

problem

04/15/10 Cyber Security Lab 27

Simple Attack Example

 Logging in with:
select count(*) from login where username =

'$username' and password = '$password';

 Setting the password to “' or 'a' = 'a”:
select count(*) from login where username =

'alice' and password = '' or 'a' =
'a';

 In fact, username doesn’t even have to match
anyone in the database

04/15/10 Cyber Security Lab 28

Detecting Vulnerability

 Try single apostrophe
− If quotes aren’t filtered, this should yield an error

message
− Error message may be useful to attackers
− May reveal database vendor (important later on)

 Try a comment character (double-hyphen in
some databases, # symbol in others)

− Only works for numeric fields, if quotes are filtered
− Not as commonly filtered

04/15/10 Cyber Security Lab 29

Inferring Database Layout (1)

 Guess at column names
' and email is null--

' and email_addr is null--

 Use error messages (or lack of)

04/15/10 Cyber Security Lab 30

Inferring Database Layout (2)
 Guess at table name
' and users.email_addr is null--

' and login.email_addr is null--

− Can be done with an automated dictionary attack
− Might discover more than one table in the query

 Guess at other table names
' and 1=(select count(*) from test)--

04/15/10 Cyber Security Lab 31

Discovering Table Data

 Depends on query structure, output format
 May be directed at a particular user or account

(e.g. root)
' or username like '%admin%'--

 May include brute-force password attacks

04/15/10 Cyber Security Lab 32

Query Stacking (1)

 Use semicolon as command separator
− Useful output is limited by application

 My main example doesn’t output anything from the database.
 Try the queries on a login page that displays a query result.

1; select * from test--

− Doesn’t display the entire table? Try modifying the query:
1; select b from test--
1; select a from test where a not in (1)--

04/15/10 Cyber Security Lab 33

Query Stacking (2)

 Displaying database structure
− Highly vendor-specific

1; select relname from pg_class--

− Output displays only one result? Use repeated
application

1; select relname from pg_class where relname
not in ('views')--

04/15/10 Cyber Security Lab 34

Query Stacking (3)

 Displaying database structure (cont)
− Table structure: vendor-specific, use repeated

application if needed
1; select attname from pg_class, pg_attribute
where pg_class.relname = 'login' and
pg_class.oid = pg_attribute.attrelid--

04/15/10 Cyber Security Lab 35

Query Stacking (4)

 Modifying the database
'; insert into login values(100, 'attacker',
'attackerpw', 2222, 'attacker@example.com')--

'; update login set password='newpw' where
username like '%admin%'--

04/15/10 Cyber Security Lab 36

Second-Order SQL Injection

 Inserting text fields that will pass initial
validation, but could be used later on.

− e.g. Adding a new user on a web form
− Username: alice'' or username=''admin
− Later, the user updates her password. The

application runs:
update users set password='$password' where
username='$username'

− The query expands to:
update users set password='newpw' where
username='alice' or username='admin'

04/15/10 Cyber Security Lab 37

How to Prevent Attacks (1)

 Input Verification
− Use pattern matching
− May be tricky if we want to allow arbitrary text

 Escape characters
− addslashes() function or other input sanitizer
− PHP “Magic Quotes”

 Automatically corrects single-quote, double-quote,
backslash, null

 Enabled by default in PHP 5, removed in PHP 6

04/15/10 Cyber Security Lab 38

How to Prevent Attacks (2)

 MySQL doesn’t allow query stacking
 Use stored procedures instead of queries
 Limit database privileges of application
 Run in non-admin user space to prevent

system calls (e.g. MS SQL Server)
 Hide error messages

04/15/10 Cyber Security Lab 39

How to Prevent Attacks (3)

 Prepared Statements (Java, Perl, PHP, ...)
− PHP/PostgreSQL: select count(*) from login where
username=$1 and password=$2

− Java: select count(*) from login where username=?
and password=?

− Partially builds parse tree, fills in gaps after user input
− Also allows database optimization
− Please note: some parts of a query cannot be

parameterized in a prepared statement.
 Table name, column name, answer size limit
 Arbitrary number of conditions

04/15/10 Cyber Security Lab 40

Query Syntax Analysis

 Injection attacks necessarily change the parse
tree of a query

Su Wa sse rm a n 0 6

04/15/10 Cyber Security Lab 41

Conclusions
 Rich target

− Most Internet activity is web based
 Fast changing technology

− JavaScript, AJAX, web services
− People innovating tech by using tools in unexpected

ways
 “Web 2.0” will continue to be interesting source

of new attacks and exploits

