

Security Tunneling

Cyber Security
Spring 2010

Reading Material
• IPSec overview

– Chapter 6 – Network Security Essentials,
William Stallings

• SSH
– RFCs 4251, 4252, 4253

• SSL/TLS overview
– Slide material from Bishop
– Chapter 7.2 – Network Security Essentials,

William Stallings
• VLAN Security Paper –

– http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.htm

http://www.cisco.com/warp/public/cc/pd/si/casi/ca6000/prodlit/vlnwp_wp.htm

What is a tunnel?
• A tunnel identifies packets in a data stream

– Identify by encapsulation (new header possibly new
trailer)

– Identify by labeling.
• Entry into a tunnel gives the data stream

different characteristics
– E.g., Privacy, authentication, different routing

characteristics
– Security is not always the goal of the tunnel

• Also called virtual private networks (VPNs) in
many situations

Tunnel Protocols for all Levels
• Layer 2

– 802.1Q VLANs – labels ethernet frames for traffic separation
– Proprietary link encryption

• Layer 3
– IPSec
– IPv6 in IPv4 – Carry IPv6 traffic over IPv4 networks
– Generic Routing Encapsulation (GRE)
– Multiprotocol Label Switching (MPLS) – uses labels to

implement circuit switching at layer 3
• Layer 4

– SSL/TLS
– SSH port forwarding

• Layer 7
– SMIME
– DNSSec

802.1Q VLAN
• Supported by many switches
• Augments ethernet frame with tag

VLAN Trunking

• Enables multiple VLANs to be carried over
a single physical link between switches

VLAN used in Siebel

• Using VLANs in the lab configuration to
create virtual wires between firewalls,
hosts, and the outside world

• CS Department uses VLAN trunking to
virtually connect machines

• VLAN trunking provides lab access to a
virtual devices running on a VMWare
server in a far distant machine room.

VLAN Security Issues

• Classic case of security being an after
thought
– Designed for traffic separation, not security!

• VLAN security requires physical security
• Cisco white paper on VLAN security

– http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml

http://www.cisco.com/en/US/products/hw/switches/ps708/products_white_paper09186a008013159f.shtml

VLAN 1

• By default Ports are configured to be in
VLAN 1
– Means VLAN 1 tends to appear on multiple

switches
– Bad activity on VLAN 1 will affect the entire

network
• Understand where VLAN 1 is used and

prune back unnecessary uses

Differentiate Trusted and Untrusted
Ports

• Reduce protocols on untrusted ports
– Limit points of attack

• For example, VLAN Trunking Protocol
(VTP) or Dynamic Trunking Protocol
(DTP)
– Cisco proprietary protocol that allows for

automatic propagation of VLAN configuration
across the network

– If VTP could be co-opted by bad guy can
reconfigure the network.

Native VLANs
• Created for backwards compatibility

– One of the VLANs associated with port can be native
– All untagged packets to with the native VLAN
– All tagged packets in native VLAN get stripped

Private VLANs
• Bundle singleton vlans (secondaries) with

promiscuous vlan (primary)
• Restrict who can initiate communication

within segment

Private VLAN Attack
• Private VLAN

– An escape to let routed traffic pass between L2
constraints

– L2 Proxy

Other Layer 2 Attacks
• MAC Flooding
• ARP Spoofing
• 802.1Q tagging attack

– Attacker creates DTP packets. Trick port into going
into trunk mode.

• Spanning Tree Protocol (STP) Attacks
– Broadcast protocol to agree on a tree of bridges to

avoid broadcast loops
– Attacker attempts to insert packets claiming he is new

root bridge

IPSec Operational Architecture

• IPSec Security Architecture, RFC 2401
• Designed by the Security Working Group

of the IETF.
– http://ietf.org/html.charters/ipsec-charter.html

• Motivated from IPv6 design
– Add arbitrary number of extension headers to

store information about the security protocols
– First IPv4 implementations around ‘97

Security Association (SA)
• Records on the endpoints that store operational

information
– E.g., encryption protocol, keying information, traffic stream filters

• One SA per endpoint to represent a simplex connection
– Two pairs of SAs to represent duplex connectivity

• The SA memory footprint can be a limiting factor in the
number of tunnels
– Smaller routers cannot support very many simultaneous SAs

• Must know the ID of your peer’s SA to communicate
– Addressed by the Security Parameters Index (SPI)
– SPI identified in the security protocol headers
– SPI + Peer address + security protocol will uniquely identify a SA

SA Attributes
• Sequence number counter and overflow

flag
• Anti-Replay Window
• AH Info or ESP info
• SA Lifetime
• IPSec Protocol mode (transport or tunnel)
• Path MTU

Security Policy Database
• Implementation specific approach to filter

traffic to SA's
– E.g., ACLs in Cisco devices

IPSec Protocols

• The IPSec framework describes how a
number of different IPSec security
protocols can be applied to a tunnel

• Two protocols implemented
– Encapsulating Security Payload (ESP) –

provides privacy (encryption) and message
authentication (detection of change)

– Authentication Header (AH) – provides
authentication (detection of change)

ESP
• RFC 2406
• Initially ESP only provided confidentiality not

message authentication
– You were supposed to use AH get authentication
– People argued that ESP as not useful without

authentication, so it was added in as an option
– Now AH is not so valuable, since you can use a null

encryption in ESP to get essentially the same thing

ESP Header
• Both confidentiality and message authentication cover

part of the header
• Payload is the encrypted original packet
• Sequence number is used to avoid replay attacks

Security Parameters Index (SPI)

Sequence Number

Payload Data (variable)

Padding (0-255 bytes) Pad Len Next Header

Authentication Data (variable)

Auth
Cover

Conf.
Cover

Replay Protection
• Monotonically increasing sequence number

– Starts at 1
– Must renegotiate if number wraps

• Window (default 64) to deal with out of
order deliver

W

N+1

• IPSec tunnels can be set up in two modes
• Tunnel mode

– Creates a new IP header and encapsulates the
original

– Used by gateways

• Transport mode
– Just encapsulates the transport layer and beyond
– Can be used of the source and destination of the

traffic are also the tunnel endpoints

Tunnel and Transport Modes

GW IP Hdr ESP Hdr Original Packet including orig IP hdr

Orig IP Hdr ESP Hdr Original Packet minus IP Hdr

Tunnel and Transport Modes

The Internet

X
Y

A B

Src=X
Dst=Y Data Src=X

Dst=Y Data

Src=X
Dst=Y DataESP

SPI=10
Src=A
Dst=B

The Internet

X Y
A B

Src=X
Dst=Y Data Src=X

Dst=Y DataESP
SPI=10

ESP
SPI=10

25

Example: Nested Tunnels

• Group in A.org needs to communicate with
group in B.org

• Gateways of A, B use IPsec mechanisms
– But the information must be secret to everyone

except the two groups, even secret from other
people in A.org and B.org

• Inner tunnel: a SA between the hosts of the
two groups

• Outer tunnel: the SA between the two
gateways

26

Host A
IP

Example: Systems

hostA.A.org

gwA.A.org

gwB.B.org

hostB.B.org

SA in tunnel mode
(outer tunnel)

SA in transport mode
(inner tunnel)

PacketHostA
ESP

HostA
AH

PacketHostA
ESP

HostA
AH

Host A
IP

Host A
IP

gwA
ESP

gwA
AH

gwA
IP

PacketHostA
ESP

HostA
AH

gwA
ESP

gwA
AH

gwA
IP

PacketHostA
ESP

HostA
AH

Host A
IP

27

Example: Packets

• Packet generated on hostA
• Encapsulated by hostA’s IPsec mechanisms
• Again encapsulated by gwA’s IPsec mechanisms

– Above diagram shows headers, but as you go left,
everything to the right would be enciphered and
authenticated, etc.

Transport
layer

headers,
data

ESP
header
from

hostA

AH
header
from

hostA

IP
header
from

hostA

ESP
header
from
gwA

AH
header
from
gwA

IP
header
from
gwA

IPSec Startup Negotiations
• To start a tunnel need to have the endpoints

agree on certain things
– Keying material
– Protocols to use on which types of traffic

• E.g., use ESP with 3DES on HTTP traffic
– Belief that the peer is who he says he is

• Some of this can be hard coded in the endpoint
configuration
– All of it was initially using manual keying

• Now much of it can be negotiated with Internet
Key Exchange (IKE) Protocol

Internet Key Exchange (IKE)
• RFC 2409
• Uses the ISAKMP SA framework (RFC 2408)

and the Oakley key negotiation protocol (RFC
2412)

• Performs mutual endpoint authentication
– Shared key authentication
– Certificate authentication
– Plus a few other

• Protocol (transform) agreement
• Key exchange and re-keying

Security Boot Strapping
• Endpoints must share some sort of information

to start communicating
– Shared secret with peer
– Knowledge of the peer’s certificate

• Extended authentication mode (Xauth) allows
the human input of authentication data that is
validated against a Radius server

• If you weren’t using IKE, you could use a manual
key for all communication

Oakley Key Determination

• Optionally uses Diffie-Hellman to provide
perfect forward secrecy
– If private key is compromised, previously

captured data is not at risk
– Must re-key often and cannot simply

exchange data keys by encrypting with the
main private key

– Fixed set of groups defined by standard
• http://www.faqs.org/rfcs/rfc5114.html

http://www.faqs.org/rfcs/rfc5114.html

Diffie-Hellman Key Exchange
• Original Public Key encryption scheme

– Relies on difficulty of computing discrete logrithm
– Can be computationally expensive

• Alice and Bob agree on large prime n and a g that is primitive mod n
(g is often 2)
– Good n’s and g’s are published. Oakely defines 6 well-known groups.

• Alice (Bob)
– chooses a large random number x (y)
– computes X = g^x mod n (Y = g^y mod n)
– sends X to Bob (sends Y to Alice)

• Alice computes k=Y^x mod n
• Bob computes k’=X^y mod n
• k = k’ so they now have a shared key

ISAKMP
• ISAKMP negotiations take place over a

fixed SA
• Divided into two phases

– First phase negotiates the security of
communication over the ISKMP SA itself

– Second phase negotiates security attributes of
the target SA

• The results of the first phase can be used
over multiple second phase negotiations

Transform Negotiation

• The initiator provides a list of security
protocols and transforms it is willing to use
on the negotiated SA. The proposals are
ordered by preference

• The responder selects from one or rejects
the negotiation if none of the proposals are
match that peer’s capabilities or policy
requirements

Main Mode and Aggressive Mode

• ISAKMP can be run in two modes
• Main mode uses more message exchanges

– Exchanges minimal information each round trip
– Enables identity protection

• Aggressive mode reduces number of messages
exchanged
– At the cost of not being able to protect as much data

during the exchanges

Main Mode Example
• ->Initiator: SA;
• <-Responder: SA;

– Now peers agree on a SA. The SA negotiation involves
agreeing on a set of protocols, e.g. ESP with 3DES vs ESP with
DES

• ->Initiator: KE; nonce
• <-Responder: KE; nonce

– Each side has now generated a key. Last exchange is
encrypted with this key

• ->Initiator: IDi; Auth
– Responder verifies initiators identity.

• <-Responder: IDr; Auth
– Initiator verifies responder’s identity.

Aggressive Mode Example

• ->Initiator: Hdr; SA; KE; Nonce; IDii
• <-Responder: Hdr; SA; KE; Nonce; IDir;

Auth
• ->Initiator: Hdr*;Auth First protected traffic
• Give up identity protection

ISAKMP anti-clogging

• Uses cookies for simple denial of service
avoidance
– Goal is to prevent simple IP spoofing from causing

endpoint to perform many computationally intensive
calculations

• Stalling suggests cookie of hash(Source Addr,
Dest Addr, Source Port, Dest Port, local secret)

– Each end selects a value that includes information
about the endpoint addresses and ports, time, and a
secret value

– Each end can determine if it’s cookie is stale to avoid
simple DOS

– Still need to aggressively cleanup requests that end
up being bogus

NAT Transparent IPSec
• Initially IPSec could not handle address translation in the middle

– RFC 3715 describes the problems
– AH includes the addresses in the outer IP header in its authentication

calculation
– Changes to the IP addresses affect the TCP/UDP checksums, which

are encrypted in ESP
– Addresses and ports encrypted or authenticated
– For remote users this was a big use case

• Introduced NAT-traversal extensions RFC 3947
• Detect NAT during IKE

– Move from standard IKE port on 500 to negotiate on port 4500
– Encapsulate the IPSec traffic using UDP to preserve the original

headers from NAT
• One endpoint must fixup the translated addresses after untunneling

the traffic

Classic IPSec Architectures
• Mesh - n^2

A C

B D

More Classic Architectures
• Hub and Spoke - N

A

DB

A

C E

IPSec challenges
• Scaling

– Numerous security associations eat up too much memory for
small routers

– Configurations on the hub in a hub and spoke network grow n^2
in the number of spokes

• Dynamic Multipoint VPN (DMVPN)
• Performance

– Even symmetric encryption can be too much for high bandwidth
environments

• Symmetry
– Both sides must have a means to prove identity to each other
– Implies the need for a PKI or other broad identity proof

mechanism

SSH Port Forwarding
• Negotiation sequences similar to IPSec and

SSL
• Operates on TCP/22 by default
• Can map local port to remote port

H2
Untunnel
to get
H1-H3/POP

H1
Forward
TCP/1111
to H3/POP

H3
H1-H2/22 H1-

H3/POP

SSL

• Transport layer security
– Provides confidentiality, integrity,

authentication of endpoints
– Developed by Netscape for WWW browsers

and servers
• Internet protocol version: TLS

– Compatible with SSL
– Standard rfc2712

http://www.ietf.org/rfc/rfc2712.txt

Working at Transport Level
• Data link, Network, and Transport headers sent

unchanged
• Original transport header can be protected if

tunneling

Ethernet
Frame
Header

IP
Header

TCP
Header

TCP data stream
Encrypted/authenticated
Regardless of application

SSL Session
• Association between two peers

– May have many associated connections
– Information for each association:

• Unique session identifier
• Peer’s X.509v3 certificate, if needed
• Compression method
• Cipher spec for cipher and MAC
• “Master secret” shared with peer

– 48 bits

SSL Connection

• Describes how data exchanged with peer
• Information for each connection

– Random data
– Write keys (used to encipher data)
– Write MAC key (used to compute MAC)
– Initialization vectors for ciphers, if needed
– Sequence numbers

Structure of SSL

SSL Record Protocol

SSL Handshake
Protocol

SSL Change Cipher
Spec Protocol

SSL Alert
Protocol

SSL Application
Data Protocol

Supporting Crypto
• All parts of SSL use them
• Initial phase: public key system exchanges keys

– Classical ciphers ensure confidentiality, cryptographic
checksums added for integrity

– Only certain combinations allowed
• Depends on algorithm for interchange cipher

– Interchange algorithms: RSA, Diffie-Hellman,
Fortezza

– AES added in 2002 by rfc3268

http://www.ietf.org/rfc/rfc3268.txt

RSA: Cipher, MAC Algorithms

SHADES, EDE mode, CBC mode

SHADES, CBC mode
SHAIDEA, CBC mode
MD5, SHARC4, 128-bit key
MD5, SHANoneRSA
SHADES, 40-bit key, CBC mode

MD5RC2, 40-bit key, CBC mode

MD5RC4, 40-bit key
MD5, SHA noneRSA,

key ≤ 512 bits

MAC AlgorithmClassical cipherInterchange
cipher

Diffie-Hellman: Types
• Diffie-Hellman: certificate contains D-H

parameters, signed by a CA
– DSS or RSA algorithms used to sign

• Ephemeral Diffie-Hellman: DSS or RSA
certificate used to sign D-H parameters
– Parameters not reused, so not in certificate

• Anonymous Diffie-Hellman: D-H with neither
party authenticated
– Use is “strongly discouraged” as it is vulnerable to

attacks

D-H: Cipher, MAC Algorithms

SHADES, EDE mode, CBC
mode

SHADES, CBC mode
SHADES, 40-bit key, CBC

mode
Diffie-Hellman,
key ≤ 512 bits
RSA Certificate

SHADES, EDE mode, CBC
mode

SHADES, CBC mode
SHADES, 40-bit key, CBC

mode
Diffie-Hellman,
DSS Certificate

MAC
Algorithm

Classical cipherInterchange cipher

Ephemeral D-H: Cipher, MAC
Algorithms

SHADES, EDE mode, CBC
mode

SHADES, CBC mode
SHADES, 40-bit key, CBC

mode
Ephemeral Diffie-
Hellman,
key ≤ 512 bits,
RSA Certificate

SHADES, EDE mode, CBC
mode

SHADES, CBC mode
SHADES, 40-bit key, CBC

mode
Ephemeral Diffie-
Hellman,
DSS Certificate

MAC AlgorithmClassical cipherInterchange
cipher

Anonymous D-H: Cipher, MAC
Algorithms

SHADES, EDE mode, CBC
mode

SHADES, CBC mode
SHADES, 40-bit key, CBC

mode

MD5RC4, 128-bit key
MD5RC4, 40-bit keyAnonymous D-H,

DSS Certificate

MAC AlgorithmClassical cipherInterchange
cipher

Fortezza: Cipher, MAC
Algorithms

SHAFortezza, CBC mode
MD5RC4, 128-bit key
SHAnoneFortezza key

exchange

MAC AlgorithmClassical cipherInterchange
cipher

Digital Signatures

• RSA
– Concatenate MD5 and SHA hashes
– Sign with public key

• Diffie-Hellman, Fortezza
– Compute SHA hash
– Sign appropriately

SSL Record Layer

Message

Compressed
blocks

Compressed
blocks,

enciphered,
with MAC

MAC

Record Protocol Overview
• Lowest layer, taking messages from higher

– Max block size 16,384 bytes
– Bigger messages split into multiple blocks

• Construction
– Block b compressed; call it bc
– MAC computed for bc

• If MAC key not selected, no MAC computed
– bc, MAC enciphered

• If enciphering key not selected, no enciphering done
– SSL record header prepended

SSL MAC Computation
• Symbols

– h hash function (MD5 or SHA)
– kw write MAC key of entity
– ipad = 0x36, opad = 0x5C

• Repeated to block length (from HMAC)
– seq sequence number
– SSL_comp message type
– SSL_len block length

• MAC
h(kw||opad||h(kw||ipad||seq||SSL_comp||SSL_len||block))

SSL Handshake Protocol

• Used to initiate connection
– Sets up parameters for record protocol
– 4 rounds

• Upper layer protocol
– Invokes Record Protocol

• Note: what follows assumes client, server
using RSA as interchange cryptosystem

Overview of Rounds

• Create SSL connection between client,
server

• Server authenticates itself
• Client validates server, begins key

exchange
• Acknowledgments all around

Handshake Round 1

Client Server
{ vC || r1 || s1 || ciphers || comps }

Client Server
{v || r2 || s1 || cipher || comp }

vC Client’s version of SSL
v Highest version of SSL that Client, Server both understand
r1, r2 nonces (timestamp and 28 random bytes)
s1 Current session id (0 if new session)
ciphers Ciphers that client understands
comps Compression algorithms that client understand
cipher Cipher to be used
comp Compression algorithm to be used

Handshake Round 2

Client Server
{certificate }

Note: if Server not to authenticate itself, only last message sent; third
step omitted if Server does not need Client certificate
kS Server’s private key
ctype Certificate type requested (by cryptosystem)
gca Acceptable certification authorities
er2 End round 2 message

Client Server
{mod || exp || SigS(h(r1 || r2 || mod || exp)) }

Client Server
{ctype || gca }

Client Server
{er2 }

Handshake Round 3

Client Server
{ pre }PubS

msgs Concatenation of previous messages sent/received this handshake
opad, ipad As above

Client Server
{ h(master || opad || h(msgs || master | ipad)) }

Both Client, Server compute master secret master:
master = MD5(pre || SHA(‘A’ || pre || r1 || r2) ||

MD5(pre || SHA(‘BB’ || pre || r1 || r2) ||
MD5(pre || SHA(‘CCC’ || pre || r1 || r2)

Client Server
{ client_cert }

Handshake Round 4

Client Server
{ h(master || opad || h(msgs || 0x434C4E54 || master || ipad)) }

msgs Concatenation of messages sent/received this handshake in
previous rounds (does notinclude these messages)

opad, ipad, master As above

Client Server
{ h(master || opad || h(msgs || master | ipad)) }

Server sends “change cipher spec” message using that protocol

Client Server

Client sends “change cipher spec” message using that protocol

Client Server

SSL Change Cipher Spec
Protocol

• Send single byte
• In handshake, new parameters considered

“pending” until this byte received
– Old parameters in use, so cannot just switch

to new ones

SSL Alert Protocol

• Closure alert
– Sender will send no more messages
– Pending data delivered; new messages

ignored
• Error alerts

– Warning: connection remains open
– Fatal error: connection torn down as soon as

sent or received

SSL Alert Protocol Errors

• Always fatal errors:
– unexpected_message, bad_record_mac,

decompression_failure, handshake_failure,
illegal_parameter

• May be warnings or fatal errors:
– no_certificate, bad_certificate,

unsupported_certificate, certificate_revoked,
certificate_expired, certificate_unknown

SSL Application Data Protocol

• Passes data from application to SSL
Record Protocol layer

