Firewall Technology

Cyber Security Spring 2010

CyberSecurity Spring 2010

Outline

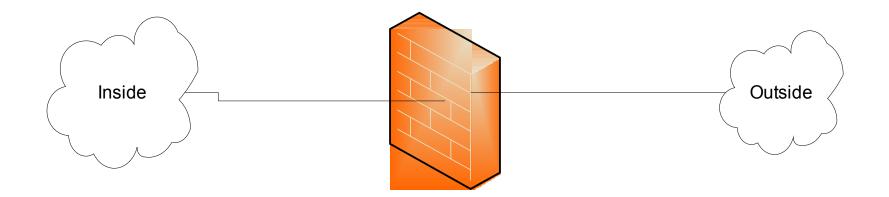
- Basics of firewalling
 - Architectures
 - Network Address Translation
 - Logging
- Advanced Topics
 - Identity in firewalls
 - Multiple security levels
- Firewall Futures

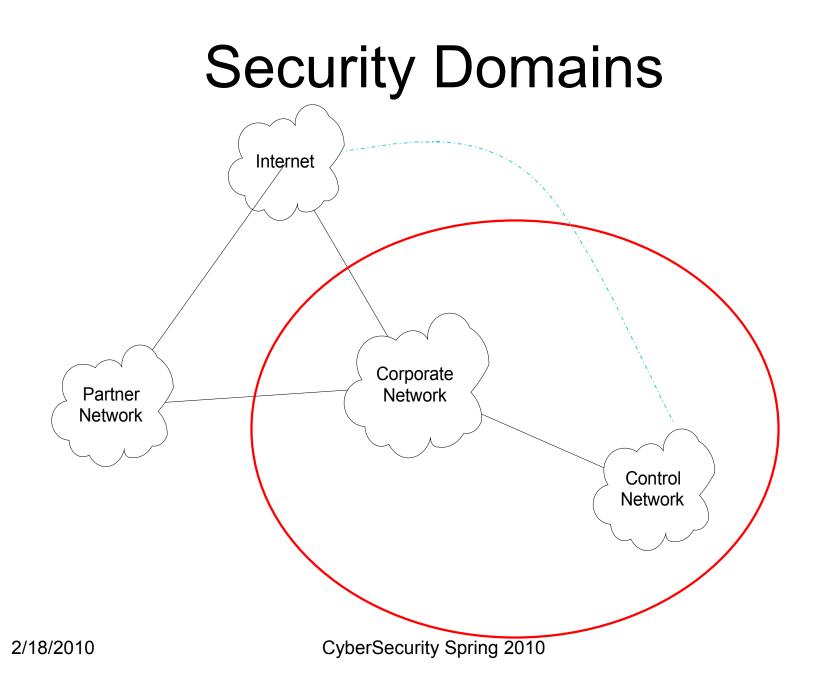
Reading Material

- "Firewalls and Internet Security: Repelling the Wily Hacker", Cheswick, Bellovin, and Rubin.
 - New second edition
- "Network Security Principles and Practices", Sadaat Malik

 Cisco oriented
- PIX 7.0 Configuration Guide http://www.cisco.com/en/US/products/ps6120/products_configuratio n_guide_book09186a0080450278.html
- PIX 7.0 Command Reference http://www.cisco.com/en/US/products/ ps6120/products_command_reference_book09186a00805fbad6.ht ml
- "Firewall and Internet Security, the Second Hundred (Internet) Years"
 - http://www.cisco.com/warp/public/759/ipj_2-2/ipj_2-2_fis1.html
 - A firewall overview article from 1999

Presentation Bias


- Talking from my experience
 - Colored by Cisco Firewalls: Centri, PIX, IOS
 FW, Firewall Service Module
 - More recently iptables
- The enterprise firewall producers chase each other so similar issues arise in Netscreen (Juniper) and Checkpoint
- Personal firewalls address a subset of the issues that Enterprise Firewalls do


2/18/2010

CyberSecurity Spring 2010

Firewall Goal

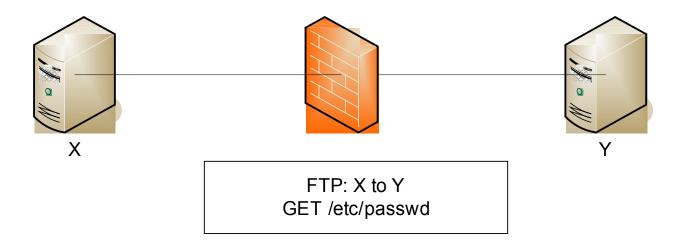
• Insert after the fact security by wrapping or interposing a filter on network traffic

Several Firewall Styles

- Differ primarily on what layers of the network stack they consider
 - Packet Filter
 - Application Proxy
 - Stateful Packet Filter

Application Proxy

- Firewall software runs in application space on the firewall
- The traffic source must be aware of the proxy and add an additional header
- Leverage basic network stack functionality to sanitize application level traffic
 - Block java or active X
 - Filter out "bad" URLs
 - Ensure well formed protocols or block suspect aspects of protocol
- Not used much anymore


Packet Filter

- Operates at Layer 3 in router or HW firewall
- Has access to the Layer 3 header and Layer 4 header
- Can block traffic based on source and destination address, ports, and protocol
- Does not reconstruct Layer 4 payload, so cannot do reliable analysis of layer 4 or higher content

Stateful Packet Filters

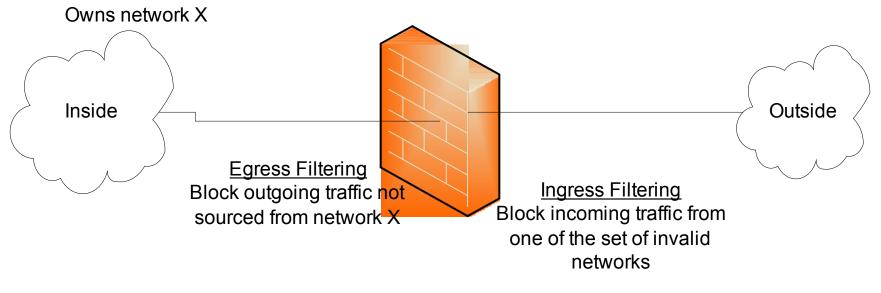
- Evolved as packet filters aimed for proxy functionality
- In addition to Layer 3 reassembly, it can reconstruct layer 4 traffic
- Some application layer analysis exists, e.g., for HTTP, FTP, H.323
 - Called context-based access control (CBAC) on IOS
 - Configured by fixup command on PIX
- Some of this analysis is necessary to enable address translation and dynamic access for negotiated data channels
- Reconstruction and analysis can be expensive.
 - Must be configured on specified traffic streams
 - At a minimum the user must tell the Firewall what kind of traffic to expect on a port, e.g., port 80 is just a clue that the incoming traffic will be HTTP
 - Degree of reconstruction varies per platform, e.g. IOS does not do IP reassembly

Traffic reconstruction

GET command causes firewall to dynamically open data channel initiate from Y to X

Might have filter for files to block, like /etc/passwd

Access Control Lists (ACLs)


- Used to define traffic streams
 - Bind ACL's to interface and action
- Access Control Entry (ACE) contains
 - Source address
 - Destination Address
 - Protocol, e.g., IP, TCP, UDP, ICMP, GRE
 - Source Port
 - Destination Port
- ACL runtime lookup
 - Linear
 - N-dimensional tree lookup (PIX Turbo ACL)
 - Object Groups
 - HW classification assists

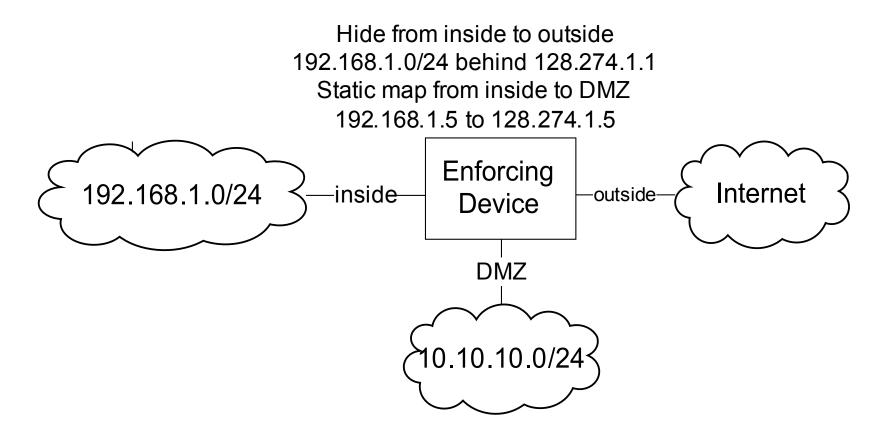
Inbound and Outbound ACLs

- On Cisco devices the ACL is bound to one interface
 - If traffic matches the ACL, associated action occurs
- ACL can interpret traffic as it enters the interface (inbound) or as it leaves the interface (outbound)
- Can have ACLs controlling on the same feature on both the incoming and outgoing interfaces

Ingress and Egress Filtering

- Ingress filtering
 - Filter out packets from invalid addresses before entering your network
- Egress filtering
 - Filter out packets from invalid addresses before leaving your network

CyberSecurity Spring 2010

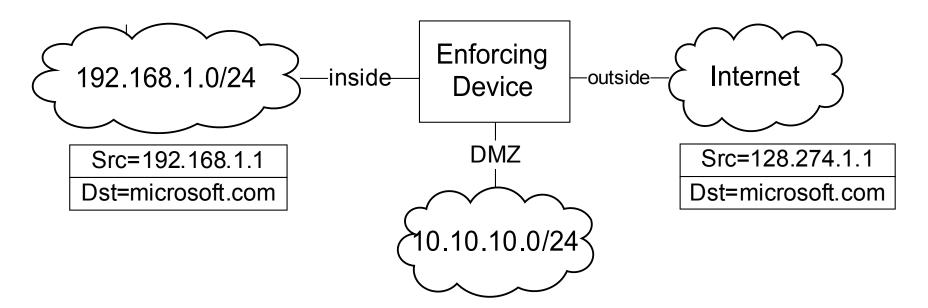

Activating Proxy control

- A given firewall type has a fixed set of application proxies
- Configurations range on the granularity you can activate the proxies
 - Activate for all traffic with a particular destination port
 - Activate for traffic matching a particular ACL
 - Some proxies might be activated by default
- Activating a proxy will dynamically open holes for related protocol channels.

Address Translation

- Traditional NAT RFC 3022 Reference RFC
- Map real address to alias address
 - Real address associated with physical device, generally an unroutable address
 - Alias address generally a routeable associated with the translation device
- Originally motivated by limited access to publicly routable IP addresses
- Later folks said this also added security
 - By hiding structure of internal network
 - Obscuring access to internal machines
- Adds complexity to firewall technology
 - Must dig around in data stream to rewrite references to IP addresses and ports
 - Limits how quickly new protocols can be firewalled

NAT example

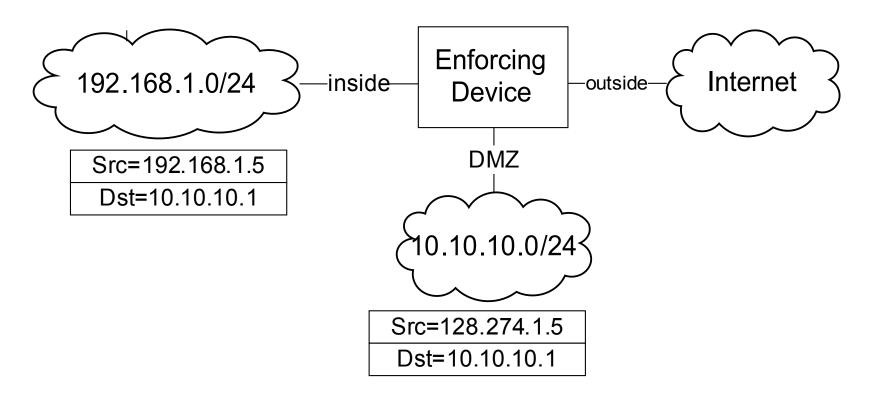

CyberSecurity Spring 2010

Address Hiding (NAPT)

- Many to few dynamic mapping
 - Packets from a large pool of private addresses are mapped to a small pool of public addresses at runtime
- Port remapping makes this sharing more scalable
 - Two real addresses can be rewritten to the same alias address
 - Rewrite the source port to differentiate the streams
- Traffic must be initiated from the real side

NAT example

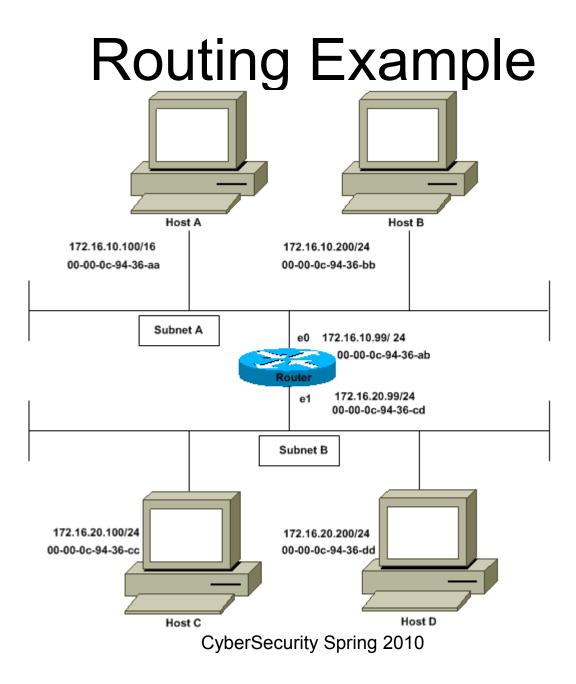
Hide from inside to outside 192.168.1.0/24 behind 128.274.1.1


CyberSecurity Spring 2010

Static Mapping

- One-to-one fixed mapping
 - One real address is mapped to one alias address at configuration time
 - Traffic can be initiated from either side
- Used to statically map out small set of servers from a network that is otherwise hidden
- Static port remapping is also available

NAT example


Static map from inside to DMZ 192.168.1.5 to 128.274.1.5

CyberSecurity Spring 2010

Proxy Arp

- Router Firewalls produces ARP replies for addresses "behind it"
 - http://www.cisco.com/en/US/tech/tk648/tk361/te
 - Goal to help with routing
- If misconfigured can bring down the network

2/18/2010

Logging

- Syslog messages generated by firewalls
 - Logging frequency configurable to varying degrees
 - Messages sent on denied connections, permitted connections, translation events, etc.
- Syslog is UDP based, so logging message arrival not reliable
 - TCP syslog exists but never caught on
 - In the end must folks want the dropping to improve performance under stress
- Messages can be passed to multiple syslog servers
- Can be used for
 - Input to anomaly detectors
 - Forensics evidence

FW Runtime Characteristics

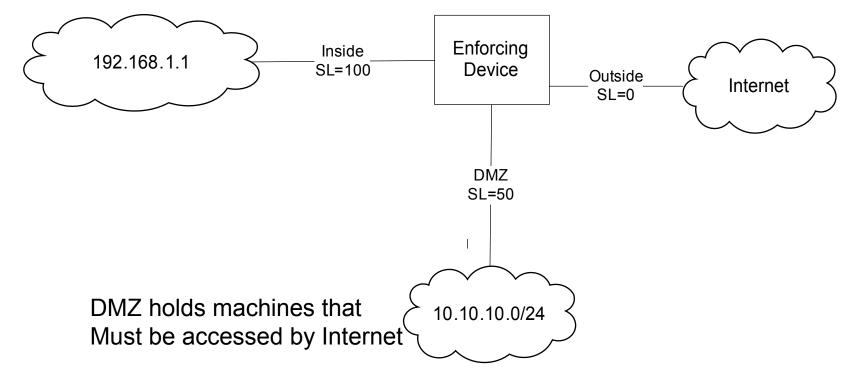
- Firewalls track streams of traffic
 - TCP streams are obvious
 - Creates pseudo UDP streams for UCP packets between the same addresses and ports that arrive near enough to each other
 - Stored in xlate table in PIX
 - conn_track in iptables
- Processing first packet in stream is more expensive
 - Must evaluate ACLs and calculate address translations

- Subsequent packets get session data from a table 2/18/2010 CyberSecurity Spring 2010

Point for other filtering

- If the firewall has reconstructed the traffic stream, can do other filtering
 - Filtering for "bad" URL's
 - Virus Scan
 - Caching
 - -IDS
 - Traffic ID

Multi-legged Firewalls

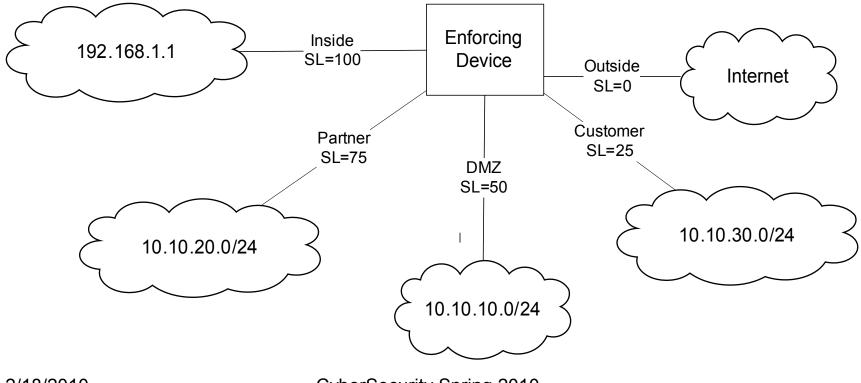

- Historically firewalls have protected inside from outside
 - Still true for the most part with personal and home firewalls
 - No longer sufficient for larger enterprises
- PIX security level solution
 - Outbound = traffic from low security level interface to high security level interface
 - Inbound = traffic from high security level interface to low security level interface
 - Different requirements for inbound and outbound traffic
- IOS divides interfaces into inside and outside groups
 - Address translation can only be defined between inside and outside groups
- Netscreens defines zones

PIX Inbound/Outbound Policies

- If not ACL's are present,
 - Outbound traffic is allowed
 - Inbound traffic is prohibited
- No traffic is allowed if the inside addresses are not translated
 - Source addresses of outbound traffic
 - Destination addresses of inbound traffic
- These default policies are evolving with newer PIX/ASA images

Classic Three Legged FW

Inside allows very limited if any Incoming connections

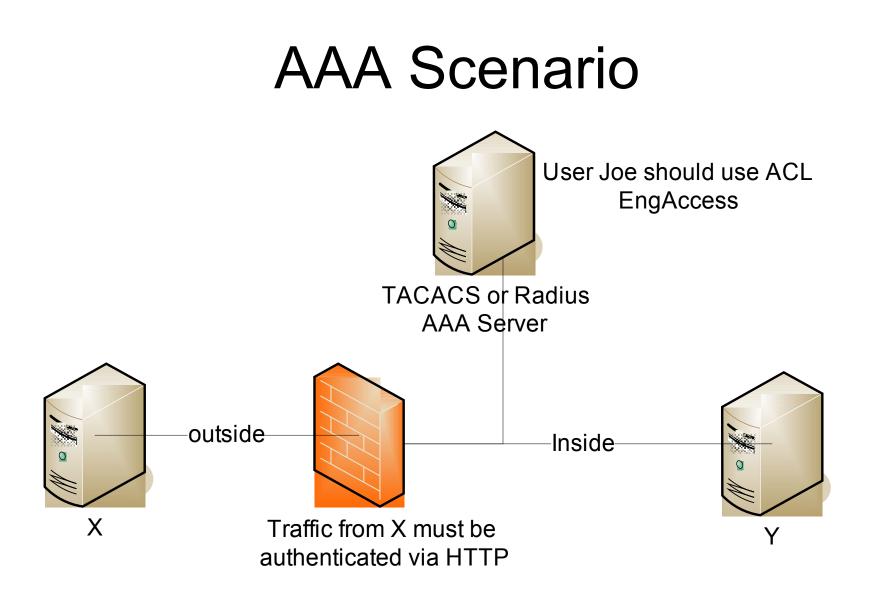


Complications from Multiple Interfaces

- Routing conflicts with address translation
 - Address translation specifies both interfaces
 - Must be evaluated before the routing, better be consistent
- Understanding traffic flows
 - Some firewalls have special rules for incoming vs outgoing traffic
 - Is traffic coming from Customer1 interface going to Customer2 interface "incoming" or "outgoing"?


Five Legged FW

- Static translation from DMZ to Customer
 - 10.10.10.10.1 to 128.1.1.1
- But routing table wants to route 128.1.1.1 from DMZ to outside interface
 - Static translation interface selection will win


CyberSecurity Spring 2010

Out-of-band management

Identity Aware Firewall

- Use TACACS+ or Radius to authenticate, authorize, account for user with respect to FW
 - For administration of FW
 - For traffic passing through FW
 - PIX cut-through proxy allows authentication on one protocol to cover other protocols from same source
- Authorization for executing commands on the device
- Download or enable ACL's
- XAuth to integrate AAA with VPN authentication and other security mechanisms

Firewall Blades

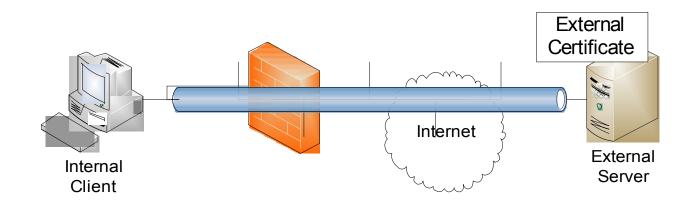
- Following general HW trend to use blade cards to augment larger hardware platform
 - Firewall Service Module (FWSM) produced by Cisco
- In this case, blade card is inserted into a switch backplane
 - Leverage high bandwidth backplane
- With VLANs can have up to 100 interfaces
 - FWSM introduced mode that eliminates security level.
 Simplifies multi-legged interface configuration

Transparent Firewalls

- Layer 2 firewalls
 - Operates like a switch
 - Do not need to change the routing of your network
 - Each FW just has one IP address for management access
- Must ensure that all traffic passes through the firewall

Firewall Virtualization

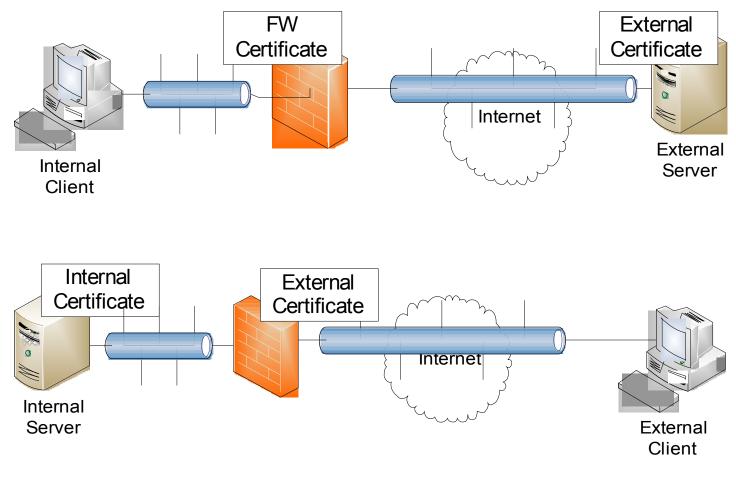
- One firewall supports 100's of virtual firewalls
 - Easier to provide separation with virtual firewalls than with one firewall with 100's of interfaces


- Possible to separate administrative control

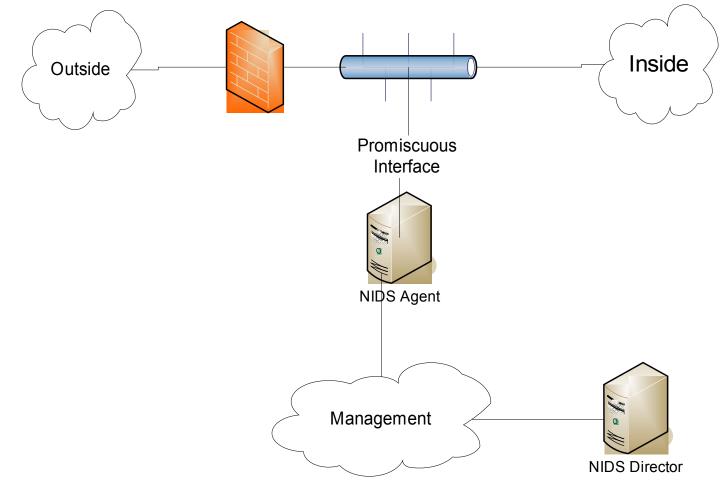
Is the Firewall Dead?

- Everything just tunnels through HTTP
- End-to-end security (encryption) renders firewalls useless
 - Tunnels hide information that firewalls would filter or sanitize
- Attacks change too quickly
- Blurring security domain perimeters
 - Who are you protecting from whom
 - Dynamic entities due to DHCP and laptops
 - More dynamic business arrangements, short term partnerships, outsourcing
- Total Cost of Ownership (TCO) is too high
 2/18/2010 Managing firewalls for at Jarge network is expensive

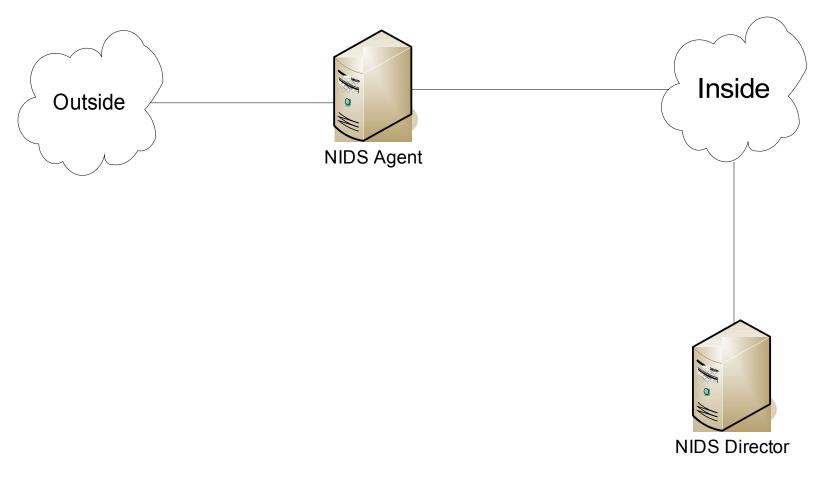
Tunnels and Firewalls


- Firewalls cannot look into tunneled traffic
- At most can do some header filtering
 Can tunnel many protocols through HTTP

Tapping SSL Tunnels


- Offered by Palo Alto Networks and Netronome (at least)
 - Proxy the tunnel
 - Create tunnel from client to FW
 - Create another tunnel from FW to server
- Dealing with certificates can be tricky

Two SSL Tapping Cases


CyberSecurity Spring 2010

Classical Network Intrusion Detection (NIDS) deployment

CyberSecurity Spring 2010

Network Intrusion Prevention System (IPS) scenario

One Example of IPS/FW Fusion

- Dynamically detecting application protocol
- Many apps tunnel through HTTP

 In traditional FW cannot block or filter these apps differently than HTTP
- Palo Alto Networks and SourceFire offer application signatures
 - E.g. Skype or AIM signatures

Distributed Firewall Instead?

- "Implementing a Distributed Firewall" http://www1.cs.columbia.edu/~angelos/Papers/df.pdf
- The actual firewalls are on each client and server machine
 - End-to-end security
- Still has management cost issues.
- Some sort of centralized control is necessary to maintain some semblance of a security policy
 - Call home protocols
 - Security profiles
- Could have a subversive client
 - Would need to dynamically verify health and stance of booting/attaching system

Another alternative

- Network Admission Control (NAC)/Network Access Protection (NAP)
 - http://www.cisco.com/en/US/netsol/ns617/networking_
- Enforcement remains in the network but knowledge of endpoint is added
 - Requires software on the client to communicate client state to enforcement device
 - New client to enforcing device protocol. Must detect subversive clients
 - Must ensure that this software runs on all clients (like VPN software now)
- Enforcement devices uses TACACS to query AAA Server about policy that applies to client profile.

The Firewall Future

- Firewall technology will continue to change
 - Increased operational change
 - Dynamically react to newly discovered "bad" machines
 - More user aware
 - Increased role of endpoint machines, but centralized firewalls provide layered security
 - IPv6 roll out may leverage firewalls as quick fix points
- Integration with other technologies
 - Intrusion detection
 - Other scouring technologies
 - Encryption/authentication
- Obsoleted by some technologies
 - End-to-end encryption only basic filtering can be done