

Secure System Development
Mechanisms

CS460 Cyber Security Lab
Spring 2010

Reading Material
• Web sites

– Microsoft links from last lecture
– Linux Capabilities - “man 7 capabilities” or

http://www.linuxjournal.com/article/5737
• Papers

– “The Security Architecture of qmail”, Hafiz, Johnson,
and Afandi. PLoP, 2004.
http://hillside.net/plop/2004/papers/mhafiz1/PLoP2004_mhafiz1_0.pdf

– Setuid Demystified Hao Chen, David Wagner, and
Drew Dean. 11th USENIX Security Symposium, 2002.

http://www.linuxjournal.com/article/5737
http://hillside.net/plop/2004/papers/mhafiz1/PLoP2004_mhafiz1_0.pdf
http://www.cs.berkeley.edu/%7Edaw/papers/setuid-usenix02.pdf
http://www.cs.berkeley.edu/%7Edaw/papers/setuid-usenix02.pdf
http://www.usenix.org/events/sec02/

Outline

• Two security problems and solutions in
Windows and Linux
– Compromise of high privilege program
– Running code as other users

Problem: Exploit on High Privilege
Program

• Attacker exploits bug in program or tricks user
into running something unexpected
– Exploits poor input processing on program
– Surreptitiously causes exploit to be run when viewing

mail
• Program is being run as high privilege user (e.g.,

root in Unix or Administrator in Windows)
– Exploit is now also running at high privilege and can

do most anything to the system

Solution: Modularity
• Divide program into smaller, communicating

programs
– Only subset of the processes need to run at high

privilege
– E.g., qmail as a redesigned MTA replacement for

sendmail
• Get simplicity as a side effect

– Easier to test and analyze for correctness

MTA structure

More MTA Structure

Security Patterns
• Compartmentalization

– Failure in one part of system allows another
part to be exploited

– Put each part in separate security domain. If
one part is compromised, the other parts
remain secure

• Distributed Responsibility
– A failure in a component can change any data

in that component.
– Partition data across components.

Solution: Least Privilege

• Even high privilege programs only need
the extra powers for small parts of its
execution
– Turn off privilege when not needed
– Permanently drop privileges that are never

needed

Windows Security Elements
• Subject – Process or thread running on behalf of the system or an

authenticated user
• Security ID (SID) – A globally unique ID that refers to the subject (user or

group)
• Access token – the runtime credentials of the subject
• Privilege – ability held by the subject to perform “system” operations.

Usually breaks the standard security model
– Associated with the access token
– Generally disabled by default.
– Can be enabled and disabled to run at least privilege
– Example powerful privileges

• SeAssignPrimaryTokenPrivilege – Replace process token
• SeBackupPrivilege – Ignore file system restrictions to backup and restore
• SeIncreaseQuotaPrivilege - Add to the memory quota for a process
• SeTcbPrivilege – Run as part of the OS
• Other privileges

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/authorization_constants.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/authorization_constants.asp

Example subject

AccessToken
sid=123456
Privileges=SeBackup/disabled
 SeTcb/disabled

Amer/shinrich

Authentication Exchange

Domain
Controller

Word
process

DB of users
SID and privs

Running at reduced privilege

• Two system calls disable or remove
privileges from the current access token
– AdjustTokenPrivileges – enables/disables

privileges
– CreateRestrictedToken – permanently

restrict or remove privileges

Example to Find Token Info
• // find the buffer size
DWORD dwSize = 0;
PTOKEN_PRIVILEGES pPrivileges = NULL;
GetTokenInformation(hToken,
TokenPrivileges, NULL, dwSize, &dwSize);

// allocate the buffer
pPrivileges = (PTOKEN_PRIVILEGES)
GlobalAlloc(GPTR, dwSize);

// now that we have a buffer, try again
GetTokenInformation(hToken,
TokenPrivileges, pPrivileges, dwSize,
&dwSize);

• MSDN pointer
http://msdn.microsoft.com/en-us/library/aa446671(VS.85).aspx

http://msdn.microsoft.com/en-us/library/aa446671(VS.85).aspx

Linux/POSIX Privilege Model
• Privileges called capabilities

– http://www.linuxjournal.com/article/5737
– Each process has three capability sets

• Effective – Set of currently activated privileges
• Permitted – Set of privileges that process can use
• Inheritable – Passed onto child processes created by exec

• Can remove capabilities globally
– Global 32 bit mask that bounds capabilities that can

be enabled on the system
– /proc/sys/kernel/cap-bound can be accessed by lcap

utilitiy
– /usr/include/sys/capability.h

http://www.linuxjournal.com/article/5737

Example
• lcap CAP_SYS_CHOWN

– Once done, it becomes impossible to change a
file's owner:

• chown nobody test.txt
• chown: changing ownership of
`test.txt':

• Operation not permitted

Set of capabilities
• lcap
• Current capabilities: 0xFFFDFCFF
• 0) *CAP_CHOWN 1) *CAP_DAC_OVERRIDE
• 2) *CAP_DAC_READ_SEARCH 3) *CAP_FOWNER
• 4) *CAP_FSETID 5) *CAP_KILL
• 6) *CAP_SETGID 7) *CAP_SETUID
• 8) *CAP_SETPCAP 9) *CAP_LINUX_IMMUTABLE
• 10) *CAP_NET_BIND_SERVICE 11) *CAP_NET_BROADCAST
• 12) *CAP_NET_ADMIN 13) *CAP_NET_RAW
• 14) *CAP_IPC_LOCK 15) *CAP_IPC_OWNER
• 16) *CAP_SYS_MODULE 17) CAP_SYS_RAWIO
• 18) *CAP_SYS_CHROOT 19) *CAP_SYS_PTRACE
• 20) *CAP_SYS_PACCT 21) *CAP_SYS_ADMIN
• 22) *CAP_SYS_BOOT 23) *CAP_SYS_NICE
• 24) *CAP_SYS_RESOURCE 25) *CAP_SYS_TIME
• 26) *CAP_SYS_TTY_CONFIG 27) *CAP_MKNOD
• 28) *CAP_LEASE 29) *CAP_AUDIT_WRITE
• 30) *CAP_AUDIT_CONTROL
• * = Capabilities currently allowed

Linux Privileges/Capabilities

• Can disable or remove capabilities per
process
– Libcap or setcap/getcap system calls
– Can specify the affected process, the process

group, or all processes
– Can specify the capability mask for all three

sets of capabilities
• Limited by lack of file system support

Problem: Run privileged program
portions as regular user

• File server program must have portions
run at high privilege, but ultimately only
returns information that the invoking user
has access to

• More frequently allow low privilege user to
run high privilege program

Solution: Impersonation

• Client program runs as end user
• Client program communicates with

privileged daemon or service
• Privileged service picks up client’s identity
• “Impersonates” client while acting on

behalf of the client

Windows Impersonation
• Each process has three access tokens associated

– Real access token
– Effective access token
– Saved access token

• Server program can run with client access token
– ImpersonateLoggedOnUser - runs under the access token of

the logged on user
• Several variations of this system call which pull the impersonation

token from various sources
– RevertToSelf to return to the original user
– SeImpersonatePrivilege has been introduced

• Presumably client has lower privilege than server
• Multiple impersonation levels to restrict token

propagation

Example impersonation

AccessToken
sid=123456

AccessToken
sid=11111

Client
Program

Server
Program1

Server
Program2

Account
DB

Client can
constrain impersonation
propagation

Calculate my
account balance

Buy a
laptop

Impersonation problems

• Knowledgeable exploit can use
RevertToSelf

• Base user is most likely a privileged user

Solution: Set User ID

• Mark executable so it runs as a different
user than the invoking user
– Mark file system program to run as privileged

user
• Rely on system calls to reset user ID to

less privileged user

Unix Set UID
• Each Unix process has three user ID’s

associated
– Effective – Used in access checks
– Real
– Saved

• setresuid system call enables application
to set all three
– Assuming caller meets requirements, e.g.,

regular user cannot set UID to 0

SetUID File Bit
• Normally, new process will run under UID

of invoking process
• If SetUID bit is set

– New process will run under executable File's
UID for effective UID

– Real UID will still be that of invoking user.
– Setting SetUID bit is restricted for normal user

Setting SetUID bit
• Consider executable Foo

– Owned by Bob
• What does this mean when run by Fred?

– Owned by root
• What does this mean when run by Fred?

SetUID system calls

• This concept has been in Unix since the
beginning

• The concept has evolved over time
– Slightly different calls and semantics in

different flavors of Unix
• In general for all flavors

– Effective user ID of 0, can set effective UID to
any value

– Otherwise can only set effective UID to real or
saved UID

Unix Set UID

• Example
– setuid(getuid())
– Run as non-root user to permanently clear the

root privilege
– Simple API hides details and may reveal

exploitable vulnerability

