Secure System Development
Mechanisms

CS460 Cyber Security Lab
Spring 2010

Reading Material

* Web sites

— Microsoft links from last lecture
— Linux Capabilities - “man 7 capabilities” or

* Papers

— “The Security Architecture of gmail”, Hafiz, Johnson,
and Afandi. PLoP, 2004.

- Hao Chen, David Wagner, and
Drew Dean. . 2002.

http://www.linuxjournal.com/article/5737
http://hillside.net/plop/2004/papers/mhafiz1/PLoP2004_mhafiz1_0.pdf
http://www.cs.berkeley.edu/%7Edaw/papers/setuid-usenix02.pdf
http://www.cs.berkeley.edu/%7Edaw/papers/setuid-usenix02.pdf
http://www.usenix.org/events/sec02/

Outline

* Two security problems and solutions in
Windows and Linux

— Compromise of high privilege program
— Running code as other users

Problem: Exploit on High Privilege
Program

* Attacker exploits bug in program or tricks user
into running something unexpected
— EXxploits poor input processing on program
— Surreptitiously causes exploit to be run when viewing
mail
* Program is being run as high privilege user (e.g.,
root in Unix or Administrator in Windows)

— Exploit is now also running at high privilege and can
do most anything to the system

Solution: Modularity

* Divide program into smaller, communicating
programs

— Only subset of the processes need to run at high
privilege

— E.g., gmail as a redesigned MTA replacement for
sendmail

* Get simplicity as a side effect
— Easier to test and analyze for correctness

MTA structure

Mezzzns Loc c.I i [Loca §Ves=ae
L [y} .
Hecever I\ UI) Sl
i H| BB " ..\-'H. .-"'-
f-’d Age ot
“mt . e Wew
P ess _Message ¢ Hemote * Rernole 'y Mzszage
- Wl el —
e v , oehoer
'\-\. J' = -'I

" -

More MTA Structure

MLIA

Local
mail

Remote
MTA

handler

Mail Queue

Hemote

Sender

Mailbox

MUA

Local
Mail
Sender

hail

Remote
MTA,

Security Patterns

* Compartmentalization

— Failure in one part of system allows another
part to be exploited

— Put each part in separate security domain. If
one part is compromised, the other parts
remain secure

* Distributed Responsibility

— A failure in a component can change any data
In that component.

— Partition data across components.

Running as
local user

Running as
gmailg user

gmail-
smtpd

Running as
qgmaild user

Legends

Spawned processes O
Daemon processes O

Mailbox

gmail-

Running as
root user

Running as
gmails user

Mail Queue

local

Running as
local user

gmail-

Running as

gmailr user
Running as

gmailg user

remaote

Running as
gmailr user

Solution: Least Privilege

* Even high privilege programs only need
the extra powers for small parts of its
execution
— Turn off privilege when not needed

— Permanently drop privileges that are never
needed

Windows Security Elements

Subject — Process or thread running on behalf of the system or an
authenticated user
Security ID (SID) — A globally unique ID that refers to the subject (user or
group)
Access token — the runtime credentials of the subject
Privilege — ability held by the subject to perform “system” operations.
Usually breaks the standard security model
— Associated with the access token
— Generally disabled by default.
— Can be enabled and disabled to run at least privilege
— Example powerful privileges
* SeAssignPrimaryTokenPrivilege — Replace process token
« SeBackupPrivilege — Ignore file system restrictions to backup and restore

* SelncreaseQuotaPrivilege - Add to the memory quota for a process
* SeTcbPrivilege — Run as part of the OS

* Other privileges

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/secauthz/security/authorization_constants.asp

% Example subject

Amer/shinrich
Domain
Controller

]

]

)

)

&m

&m

Word DB of users
or .
™\ AccessToken SID and privs
process sid=123456

Privileges=SeBackup/disabled
SeTcb/disabled

Running at reduced privilege

* Two system calls disable or remove
privileges from the current access token

— AdjustTokenPrivileges — enables/disables
privileges

— CreateRestrictedToken — permanently
restrict or remove privileges

Example to Find Token Info

// find the buffer size

DWORD dwSize = 0;

PTOKEN PRIVILEGES pPrivileges = NULL;
GetTokenInformation (hToken,
TokenPrivileges, NULL, dwSize, &dwSize) ;

// allocate the buffer
pPrivileges = (PTOKEN PRIVILEGES)

GlobalAlloc (GPTR, dwSize) ;

// now that we have a buffer, try again
GetTokenInformation (hToken,
TokenPrivileges, pPrivileges, dwSize,
&dwSize) ;

* MSDN pointer

http://msdn.microsoft.com/en-us/library/aa446671(VS.85).aspx

Linux/POSIX Privilege Model

* Privileges called capabilities

— Each process has three capability sets
» Effective — Set of currently activated privileges
* Permitted — Set of privileges that process can use
* Inheritable — Passed onto child processes created by exec

* Can remove capabilities globally

— Global 32 bit mask that bounds capabilities that can
be enabled on the system

— [proc/sys/kernel/cap-bound can be accessed by Icap
utilitiy
— [usr/include/sys/capability.h

http://www.linuxjournal.com/article/5737

Example

lcap CAP SYS CHOWN

— Once done, it becomes impossible to change a
file's owner:

chown nobody test. txt

chown: changing ownership of
"test.txt':

Operation not permitted

Set of capabilities

lcap

Current capabilities: OXFFFDFCFF
0) *CAP_CHOWN
2) *CAP_DAC READ SEARCH
4) *CAP_FSETID
6) *CAP_SETGID
8) *CAP_SETPCAP
10) *CAP_NET_BIND_SERVICE
12) *CAP_NET_ADMIN
14) *CAP_IPC_LOCK
16) *CAP_SYS MODULE
18) *CAP_SYS_CHROOT
20) *CAP_SYS PACCT
22) *CAP_SYS BOOT
24) *CAP_SYS RESOURCE
26) *CAP_SYS TTY_CONFIG
28) *CAP_LEASE
30) *CAP_AUDIT_CONTROL

* = Canahilitiae ~1irranthvy allawad

1) *CAP_DAC_OVERRIDE
3) *CAP_FOWNER
5) *CAP_KILL
7) *CAP_SETUID
9) *CAP_LINUX_IMMUTABLE
11) *CAP_NET_BROADCAST
13) *CAP_NET_RAW
15) *CAP_IPC_OWNER
17) CAP_SYS_RAWIO
19) *CAP_SYS_PTRACE
21) *CAP_SYS_ADMIN
23) *CAP_SYS NICE
25) *CAP_SYS_TIME
27) *CAP_MKNOD
29) *CAP_AUDIT_WRITE

Linux Privileges/Capabilities

* Can disable or remove capabilities per
process
— Libcap or setcap/getcap system calls

— Can specify the affected process, the process
group, or all processes

— Can specify the capability mask for all three
sets of capabilities

* Limited by lack of file system support

Problem: Run privileged program
portions as regular user

* File server program must have portions
run at high privilege, but ultimately only
returns information that the invoking user
has access to

* More frequently allow low privilege user to
run high privilege program

Solution: Impersonation

Client program runs as end user

Client program communicates with
privileged daemon or service

Privileged service picks up client’s identity

“Impersonates” client while acting on
behalf of the client

Windows Impersonation

Each process has three access tokens associated
— Real access token

— Effective access token

— Saved access token

Server program can run with client access token

— ImpersonateLoggedOnUser - runs under the access token of
the logged on user

* Several variations of this system call which pull the impersonation
token from various sources

— RevertToSelf to return to the original user
— SelmpersonatePrivilege has been introduced

Presumably client has lower privilege than server

Multiple impersonation levels to restrict token
propagation

Example impersonation

AccessToken AccessToken
sid=123456 sid=11111

Client
Program

Server
Program1

: Buy a
Client can : Account a ilo

constrain impersonation DB ptop
propagation

Server
Program?2

Impersonation problems

* Knowledgeable exploit can use
RevertToSelf

* Base user is most likely a privileged user

Solution: Set User ID

* Mark executable so it runs as a different
user than the invoking user

— Mark file system program to run as privileged
user

* Rely on system calls to reset user ID to
less privileged user

Unix Set UID

* Each Unix process has three user ID’s
associated
— Effective — Used in access checks
— Real
— Saved

* setresuid system call enables application
to set all three

— Assuming caller meets requirements, e.g.,
regular user cannot set UID to O

SetUID File Bit

* Normally, new process will run under UID
of invoking process

* If SetUID bit is set

— New process will run under executable File's
UID for effective UID

— Real UID will still be that of invoking user.
— Setting SetUID bit is restricted for normal user

Setting SetUID bit

* Consider executable Foo
— Owned by Bob
* What does this mean when run by Fred?

— Owned by root
* What does this mean when run by Fred?

SetUID system calls

* This concept has been in Unix since the
beginning

* The concept has evolved over time

— Slightly different calls and semantics in
different flavors of Unix
* In general for all flavors

— Effective user ID of 0, can set effective UID to
any value

— Otherwise can only set effective UID to real or
saved UID

Unix Set UID

* Example
— setuid(getuid())

— Run as non-root user to permanently clear the
root privilege

— Simple API hides details and may reveal
exploitable vulnerability

