
Mandatory Access Control
and SE Linux

CS 460 Cyber Security Lab
Spring ‘10

Overview

• Review mandatory access control
• Discuss SE Linux

– Type Enforcement Model
– MLS or Bell-LaPadula model
– Multiple Category Security (MCS)

MAC vs DAC
• Discretionary Access Control (DAC)

– Normal users can change access control state directly assuming
they have appropriate permissions

– Access control implemented in standard OS’s, e.g., Unix, Linux,
Windows

– Access control is at the discretion of the user
• Mandatory Access Control (MAC)

– Enforced by system wide set of rules
– Normal user cannot change access control schema

• “Strong” system security requires MAC
– Normal users cannot be trusted

Confidentiality Policy

• Goal: prevent the unauthorized disclosure
of information
– Deals with information flow
– Integrity incidental

• Multi-level security models are best-known
examples
– Bell-LaPadula Model basis for many, or most,

of these

Bell-LaPadula Model, Step 1

• Security levels arranged in linear ordering
– Top Secret: highest
– Secret
– Confidential
– Unclassified: lowest

• Levels consist of security clearance L(s)
– Objects have security classification L(o)

Bell, LaPadula 73

Example

objectsubjectsecurity level

Telephone Lists

Activity Logs

E-Mail Files

Personnel Files

UlaleyUnclassified

ClaireConfidential

SamuelSecret

TamaraTop Secret

• Tamara can read all files
• Claire cannot read Personnel or E-Mail Files
• Ulaley can only read Telephone Lists

Reading Information
• Information flows up, not down

– “Reads up” disallowed, “reads down” allowed
• Simple Security Condition (Step 1)

– Subject s can read object o iff, L(o) ≤ L(s) and
s has permission to read o

• Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

Writing Information
• Information flows up, not down

– “Writes up” allowed, “writes down” disallowed
• *-Property (Step 1)

– Subject s can write object o iff L(s) ≤ L(o) and
s has permission to write o

• Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

Basic Security Theorem, Step 1

• If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition (step 1), and the
*-property (step 1), then every state of the
system is secure
– Proof: induct on the number of transitions

• Meaning of “secure” in axiomatic

Bell-LaPadula Model, Step 2

• Expand notion of security level to include
categories (also called compartments)

• Security level is (clearance, category set)
• Examples

– (Top Secret, { NUC, EUR, ASI })
– (Confidential, { EUR, ASI })
– (Secret, { NUC, ASI })

Levels and Lattices

• (A, C) dom (A′, C′) iff A′ ≤ A and C′ ⊆ C
• Examples

– (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
– (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})
– (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
– (Secret, {NUC}) ¬dom (Confidential,{NUC, EUR})

• Let C be set of classifications, K set of categories. Set
of security levels L = C × K, dom form lattice
– Partially ordered set
– Any pair of elements

• Has a greatest lower bound
• Has a least upper bound

Example Lattice

TS:
NUC,EUR

TS:
NUC,ASI

TS:NUC

S:NUC

C:
NUC,EUR

C:EUR
SL

TS: ASI,
NUC,EUR

Levels and Ordering

• Security levels partially ordered
– Any pair of security levels may (or may not)

be related by dom
• “dominates” serves the role of “greater

than” in step 1
– “greater than” is a total ordering, though

Reading Information
• Information flows up, not down

– “Reads up” disallowed, “reads down” allowed
• Simple Security Condition (Step 2)

– Subject s can read object o iff L(s) dom L(o)
and s has permission to read o

• Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

– Sometimes called “no reads up” rule

Writing Information
• Information flows up, not down

– “Writes up” allowed, “writes down” disallowed
• *-Property (Step 2)

– Subject s can write object o iff L(o) dom L(s)
and s has permission to write o

• Note: combines mandatory control (relationship of
security levels) and discretionary control (the
required permission)

– Sometimes called “no writes down” rule

Basic Security Theorem, Step 2
• If a system is initially in a secure state, and

every transition of the system satisfies the
simple security condition (step 2), and the *-
property (step 2), then every state of the system
is secure
– Proof: induct on the number of transitions
– In actual Basic Security Theorem, discretionary

access control treated as third property, and simple
security property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.

Problem

• Colonel has (Secret, {NUC, EUR})
clearance

• Major has (Secret, {EUR}) clearance
• Can Major write data that Colonel can

read?
• Can Major read data that Colonel wrote?
• What about the reverse?

Solution
• Define maximum, current levels for subjects

– maxlevel(s) dom curlevel(s)
• Example

– Treat Major as an object (Colonel is writing to
him/her)

– Colonel has maxlevel (Secret, { NUC, EUR })
– Colonel sets curlevel to (Secret, { EUR })
– Now L(Major) dom curlevel(Colonel)

• Colonel can write to Major without violating “no writes down”
– Does L(s) mean curlevel(s) or maxlevel(s)?

• Formally, we need a more precise notation

Adjustments to “write up”

• General write permission is both read and
write
– So both simple security condition and *-

property apply
– S dom O and O dom S means S=O

• BLP discuss append as a “pure” write so
writeup still applies

BLP in OS’s
• Multi-level systems (MLS) implemented in OS’s

follow BLP
– Many Trusted OS’s evaluated over the years.
– Trusted Solaris is probably most widely deployed

• Often people use the concepts of MAC and MLS
and BLP interchangeably
– But there exist other MAC models

• There are also mandatory integrity models
– But we won’t go there today…

Example Scenario

Proj1HighCharlesDev
Manager

Proj1,Proj2LowBobIntern

Proj1,Proj2,
Proj3

HighAliceProject
Manager

ProjectsClearanceUserRole

Sensitivity Labels

High:Proj1Charles

Low:Proj1,Proj2Bob

High:Proj1,Proj2,Proj3Alice

Sensitivity LabelUser

Operations

• What is the highest Proj1 file label such
that
– Alice and Bob can both read?
– Alice and Charles can both read?
– All three can read

• What about write?

SE Linux Security Architecture
• A bolt-on to the basic Unix security model

– Implements a security server to interpret security
policy

– Leaves basic Unix security mechanisms alone. But
replace key programs to require security server
approval as well

• E.g. the SE Linux identity and the Linux user are two
separate things.

• SE Linux labeling and Unix DAC are both applied

SELinux Architecture
• Sponsored by NSA
• Evolved from Flask architecture precursor
• Originally direct kernel patch

– Moved to use the Linux Security Module (LSM)
– Limited number of tools that can hook into LSM

• Meeting Critical Security Objectives with
Security-Enhanced Linux
– http://www.nsa.gov/research/_files/selinux/pap

ers/ottawa01-abs.shtml

Key SELinux Concepts
• Users – Identifier for a single user or an

equivalence class of users
• Class – Type of an object, e.g., file or process
• Roles – Specification of privileges or actions that

can be taken by user fulfilling a role
• Domains – Classification of a subject
• Types – Classification of an object (really the

same thing as a domain but applied to objects)

SELinux Concepts
• Two basic security enforcement decisions

– Access control: Can subject access object?
– Labeling: What label should a new object have?

• Very general policy language enables the
specification of many models.
– Ships with a targeted policy enabled.

SE Linux Type Enforcement (TE)

• Access controlled by unstructured label
called a type
– When labeling a process the type is

sometimes called a domain
• Policy defines access rules in terms of

process and file types
– allow <subject type>
<target type>:<class set> <permission set>

– allow httpd_t http_config_t:file
 { read, write };

Example TE mapping

Proj1, SecretProj1Charles

ROProj1, ROProj2Bob

Proj1, Proj2, Proj3, SecretProj1,
SecretProj2

Alice

Domain or typeUser

TE Rules

• allow Proj1 ProjData:file
 { read, write, execute };

• allow ROProj1 ProjData:file { read, execute };
• allow SecretProj1 SecretProj1Data: file

 { read, write, execute };

Operations

• How must data be labeled for Alice, Bob,
and Charles to coordinate on Proj1?

• How must sensitive Proj1 data be labeled?
• Can Bob write any Proj1 data?

SE Linux Concepts
• Entities are labeled with a security context

– User, Role, Type or Domain
– E.g., Bob:user_r:corporate_t
– When displayed from the “id” command means

• Logged on as user Bob fulfilling the user_r role in the
corporate_t domain

– When displayed off file foo from “ls –Z foo” means
• Created by user Bob while in user_r role. Member of

corporate_t type

Policy Language Overview
• Type declaration

– type type-name [alias alias-id] [, attr-id] ;
– E.g., type sshd_t, domain, privuser, privrole;
– Binds a type name to some attributes

• Attributes are arbitrary tags associated with
types at definition type

• In many places in policy attributes can be used
in place of direct types
– allow domain unlabeled_t:file { read, write,

execute };
• Also used in implementing MLS. More later.

Type Transition
• Defines the rules for the type of a new object

– type_transition source_types target_types : classes
new_type ;

• Source_type is the type/domain of the creating subject.
• Target_type is the type of the parent object, e.g. directory in

the file system case
– E.g., type_transition sshd_t tmp_t : devfile_class_set

cardmsg_dev_t ;
• When sshd daemon creates a device file in the tmp directory,

the new file is labeled with cardmsg_dev_t
• devfile_class_set is a M4 macro

Access Vector Rules

• Rules that determine which domains can
access which types
– (allow | auditallow | dontaudit) src_type

target_type : classes permissions ;
– When a subject of src_type accesses an

object of target_type, it has the specified
permissions if object is one of the specified
classes

– E.g., allow sshd_t shell_exec_t : file execute;

Role Based Access Control
• Provide indirection between a user and the

privileges of a user
– A user can fulfill multiple roles
– Multiple users can fulfill the same role
– User groups can act as a weak substitution for

Roles
• User may be capable of multiple roles but

will only operate with one active role
– Reduce privilege exposure

Role Syntax
• Role Definition

– role name type type_set ;
– Defines which domains (types) a role can be

assumed in
– E.g., role staff_r type staff_t;

• Role Allow
– allow current_role new_role ;
– E.g., allow staff_t sysadm_t ;
– If not specified cannot take one new role from current

role

Domain Transitions

• By default new process inherits domain of
creating process

• Can create additional rules to enable a
domain transition
– type_transition d1 d2:process f1
– Plus three allow rules to permit execute

access between the three types

TE Policy Problems
• Explicit rule base policy gives expressibility, but…
• Policies become very large

– 150,000 rules in “targeted” SE Linux policy (after macro
expansion

• Policy language is powerful, but very low level
– Macros used to approximate program modularity
– Analysis tools work post macro

Modular Policy
• Pre-FC5 all policy files just plugged into a single file and

compiled
– Must reload whole policy to add policy for new app
– App-specific policy must depend on specific names of

existing policy
• Modular mechanism enables defining type parameters

– http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/sec-sel-building-policy-module.html

http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/sec-sel-building-policy-module.html

MLS in SE Linux

• A parallel security model that can be
executed in addition to type enforcement

• Augment the security context with a
sensitivity label
– Sensitivity label equals one of 16 clearance

levels, and a subset of 256 compartments
– Bob:user_r:corporate_t:s0_c0,c5,c10

MLS in SE Linux
• Leverages the TE constraint policy

language to express the BLP access rules
• Added mlsconstrain statement

– mlsconstrain { dir file lnk_file } { read getattr
execute }
 ((l1 dom l2) or
 ((t1 == mlsfilereadtoclr)
 and (h1 dom l2)) or
 (t1 == mlsfileread) or
 (t2 == mlstrustedobject));

MCS in SE Linux
• Multiple Category Security

– Attempts to use the MLS infrastructure to
provide a more useable security mechanism
for mainline RedHat distributions

• Use the sensitivity labels
– But only allow a single clearance
– Effectively assign sets of categories to

subjects and objects
– Using the sensitivity label in the security

context

MCS in SE Linux
• While MCS uses the MLS mechanisms it

is not a mandatory control
• Regular users can assign any category

associated with them to a file they have
access to
– Regular users have the labeling discretion

• Functionally equivalent to ACLs, but
stylistically different
– May be easier to understand

Summary
• MAC is not the same as Bell LaPadula
• SE Linux offers several access control models

– Type enforcement, MLS, and MCS
• SE Linux flexibility can be complex

– Once the complex mandatory policy has been created
and proven, the normal user cannot evade it

• More execution details for SELinux in upcoming
class exercise.

