IPv4 Overview

CS460 - Cyber Security Lab Spring 2009

Outline

- Review Layered Network Architecture
- Network Layer protocols
- Transport Layer Protocols
- Application Layer Protocols

Reading Material

- Many texts on IP networking
 - Computer Networks, Andrew Tannenbaum
 - Data and Computer Communications, William Stallings
 - Internetworking with TCP/IP Vol 1, Douglas Comer
- Plus all the originals from the Internet Engineering Task Force (IETF)
 - http://ietf.org/

OSI Reference Model

- The layers
 - 7: Application, e.g., HTTP, SMTP, FTP
 - 6: Presentation
 - 5: Session
 - 4: Transport, e.g. TCP, UDP
 - 3: Network, e.g. IP, IPX
 - 2: Data link, e.g., Ethernet frames, ATM cells, 802.11
 - 1: Physical, e.g., Ethernet media, ATM media, radio waves
- Standard software engineering reasons for thinking about a layered design

Various network devices

- Hosts and servers Operate at Level 7 (application)
- Proxies Operate at level 7
- Firewalls Operate between levels 2 and 7. From the outside world make changes at levels 2 (in transparent mode) or 3 (in routing mode)
- Routers Operate at Level 3 (network)
- Switches or Hubs Operate at level 2 (data link)
- Gateways Operate at level 2

Data	
Http Hdr	
TCP Hdr	
IP Hdr	
Ether Hdr	

IPv4

- See Wikipedia for field details
 - http://en.wikipedia.org/wiki/IPv4

Version	IHL	Type of service		Total length		
Identification				DF	MF	Frag Offset
Time to live		Protocol	Header checksum			eader checksum
Source address						
Destination Address						
0 or more words of options						

Ipv4 Addressing

- Each entity has at least one address
- Addresses divided into networks
- Addresses in your networks are "directly" connected
 - Broadcasts should reach them
 - No need to route packets to them

IP Network Specification

- Classful routing (up until around '93)
 - Class A (8 bit prefix)
 - 0.0.0.0 127.255.255.255
 - Class B (16 bit prefix)
 - 128.0.0.0 191.255.255.255
 - Class C (24 bit prefix) networks
 - 192.0.0.0 223.255.255.255
 - Specific prefix hardcoded to be one of these classes
- Classless Inter-Domain Routing (CIDR)
 - Specify prefix and and prefix size
 - 192.168.1.0/24 = 192.168.1.0 255.255.255.0 =192.168.1.0 - 192.168.1.255

Switches

- Original Ethernet broadcast all packets
- Layer two means of passing packets
 - Learn or config which MAC's live behind which ports
 - Only pass traffic to the appropriate port
- Span ports
 - Mirror all traffic

Address spoofing

- Sender can put any source address in packets he sends:
 - Can be used to send unwelcome return traffic to the spoofed address
 - Can be used to bypass filters to get unwelcome traffic to the destination
- Reverse Path verification can be used by routers to broadly catch some spoofers

Fragmentation

- May need to fragment an IP packet if one data link along the way cannot handle the packet size
 - Perhaps path is a mix of different HW
 - Perhaps unexpected encapsulation makes the packet larger than the source expected
 - Hosts try to understand Maximum Transmission Unit (MTU) to avoid the need for fragmentation (which causes a performance hit)
- Any device along the way can fragment
 - Identification field identifies all elements of the same fragment
 - Fragmentation stored in the MF (more fragments) and fragment offset fields
 - Devices can reassemble too
 - But generally the destination does the reassembly

Fragmentation Flaws?

- Split packet to fool simple firewall and IDS
 - Intermediate content observers must do reassembly
- Overlapping fragments
 - Can be used to trick IDS by hiding, e.g. a "get /etc/password" request
 - Different clients reassemble overlapping fragments differently
 - Just drop overlapping fragments
- Bad fragment offsets exploit poor stack implementations
 - E.g. Teardrop attack, negative offsets or overlarge offsets cause buffer overflows
 - Firewalls can check for well formed packets.
- Resource attacks on re-assemblers
 - Send all but one fragment for many packets

Address Resolution Protocol (ARP)

- Used to discover mapping of neighboring ethernet MAC to IP addresses.
 - Need to find MAC for 192.168.1.3 which is in your interface's subnetwork
 - Broadcast an ARP request on the link
 - Receive an ARP reply giving the correct MAC
 - The device stores this information in an ARP cache or ARP table

Does Anyone Remember ARP Cache Poisoning?

ARP cache poisoning

- Bootstrap problem with respect to security. Anyone can send an ARP reply
 - The Ingredients to ARP Poison, http://www.governmentsecurity.org/articles/TheIngredientstoARP
- Classic Man-in-the-middle attack
 - Send arp reply messages to device so they think your machine is someone else
 - Better than simple sniffing because not just best effort.
- Solutions
 - Encrypt all traffic
 - Monitoring programs like arpwatch to detect mapping changes
 - Which might be valid due to DHCP

Basic IPv4 Routing

- Static routing. Used by hosts, firewalls and routers.
 - Routing table consists of entries of
 - Network, Next hop address, metric, interface
 - May have routing table per incoming interface
 - To route a packet, take the destination address and find the best match network in the table. In case of a tie look at the metric
 - Use the corresponding next hop address and interface to send the packet on.
 - The next hop address is on the same link as this device, so you use the next hop's data-link address, e.g. ethernet MAC address
 - Decrement "time to live" field in IP header at each hop. Drop packet when it reaches 0
 - Attempt to avoid routing loops
 - As internet got bigger, TTL fields got set bigger. 225 maximum

Routing example

- Receive a packet destined to 192.168.3.56 on inside interface
- Local routing table for inside interface
 - 1. 192.168.2.0/30, 127.0.0.1, 1, outside
 - 2. 192.168.5.0/29, 127.0.0.1, 1, dmz
 - 3. 192.168.3.0/24, 192.168.5.6, 1, dmz
 - 4. 192.168.3.0/24, 192.168.1.2, 3, outside
 - 5. 0.0.0/0, 192.168.1.2, 1, outside
- Entries 3 and 4 tie. But metric for 3 is better
- Entries 1 and 2 are for directly connected networks

Source Based Routing

- In the IP Options field, can specify a source route
 - Was conceived of as a way to ensure some traffic could be delivered even if the routing table was completely screwed up.
- Why is this bad?
 - Can be used by the bad guy to avoid security enforcing devices
 - Most folks configure routers to drop packets with source routes set

IP Options in General

- Originally envisioned as a means to add more features to IP later
- Most routers drop packets with IP options set

 Stance of not passing traffic you don't understand
 Therefore, IP Option mechanisms never really took off
- In addition to source routing, there are security Options
 - Used for DNSIX, a MLS network encryption scheme

Dynamic Routing Protocols

- For scaling, discover topology and routing rather than statically constructing routing tables
 - Open Shortest Path First (OSPF): Used for routing within an administrative domain (Autonomous System)
 - RIP: not used much anymore
 - Border Gateway Protocol (BGP): Used for routing between administrative domains. Can encode nontechnical transit constraints, e.g. Domain X will only carry traffic of paying customers
 - Receives full paths from neighbors, so it avoids counts to infinity.

Dynamic Routing

- Injecting unexpected routes a security concern.
 - BGP supports TCP MD5 authentication
 - Creates a hash of the TCP header and data portion
 - Keyed with shared secret
 - Filter out route traffic from unexpected (external) points
 - OSPF has MD5 authentication, and can statically configure neighbour routers, rather than discover them.

Secure BGP

- Renewed government emphasis
- BBN prototype done earlier this decade
- Like Secure DNS add PKI
 - Bind certificates with ownership of address blocks and Autonomous systems
- BBN Site
 - http://www.ir.bbn.com/sbgp/
 - Secure Border Gateway Protocol (S-BGP) Kent, S.; Lynn, C.; Seo, K. Selected Areas in Communications, IEEE Journal on Volume 18, Issue 4, Apr 2000

Internet Control Message Protocol (ICMP)

- Used for diagnostics
 - Destination unreachable
 - Time exceeded, TTL hit 0
 - Parameter problem, bad header field
 - Source quench, throttling mechanism rarely used
 - Redirect, feedback on potential bad route
 - Echo Request and Echo reply, ping
 - Timestamp request and Timestamp reply, performance ping
- Can use information to help map out a network
 Some people block ICMP from outside domain

Smurf Attack

- An amplification DoS attack
 - A relatively small amount of information sent is expanded to a large amount of data
- Send ICMP echo request to IP broadcast addresses. Spoof the victim's address as the source
- The echo request receivers dutifully send echo replies to the victim overwhelming it
- Fraggle is a UDP variant of the same attack

Transport layer

- UDP and TCP
- Transport flows are defined by source and destination ports
 - A pair of devices can have numerous flows operating simultaneously by communicating between different pairs of ports
- Applications are associated with ports (generally just destination ports)
 - IANA organizes port assignments http://www.iana.org/
- Source ports generally dynamically selected
 - Ports under 1024 are considered well-known ports
 - Would not expect source ports to come from the well-known range
- Scanners probe for listening ports to understand the services running on various machines

Datagram Transport

- User Datagram Protocol (UDP)
 - A best-effort delivery, no guarantee, no ACK
 - Lower overhead than TCP
 - Good for best-effort traffic like periodic updates
 - No long lived connection overhead on the endpoints
- Some folks implement their own reliable protocol over UDP to get "better performance" or "less overhead" than TCP
 - Such efforts don't generally pan out
- TFTP and DNS protocols use UDP
- Data channels of some multimedia protocols, e.g., H.323 also use UDP

UDP Header

Source Port	Destination Port
UDP Length	UDP checksum

Reliable Streams

- Transmission Control Protocol (TCP)
 - Guarantees reliable, ordered stream of traffic
 - Such guarantees impose overhead
 - A fair amount of state is required on both ends
- Most Internet protocols use TCP, e.g., HTTP, FTP, SSH, H.323 control channels

TCP Header

Sou	urce Port		Destination Port			
Sequence Number						
Acknowledgement number						
HDR Len	UAPRS RCSSY GKHTN	F I N	Window Size			
Checksum			Urgent Pointer			
Options (0 or more words)						

Three-way Handshake

Syn flood

- A resource DoS attack focused on the TCP three-way handshake
- Say A wants to set up a TCP connection to B
 - 1. A sends SYN with its sequence number X
 - 2. B replies with its own SYN and sequence number Y and an ACK of A's sequence number X
 - 3. A sends data with its sequence number X and ACK's B's sequence number Y
- Send many of the first message to B. Never respond to the second message.
 - This leaves B with a bunch of half open (or embryonic) connections that are filling up memory
 - Firewalls adapted by setting limits on the number of such half open connections.

Syn Flood protections

- Adjust limits on half open connections
- Syn proxying
- Syncookies
 - Add structure to the ack number
 - Top 4 bits: t mod 32, where t is a running counter
 - Next 3 bits: encoding of MSS
 - Bottom 24 bits: Server selected secret function of client IP address and port, server IP address and port, and t
 - http://cr.yp.to/syncookies.html

Application Protocols

- Single connection protocols
 - Use a single connection, e.g. HTTP, SMTP
 - Expand on some of the SMTP commands...
- Dynamic Multi-connection Protocols, e.g. FTP and H.323
 - Have a well known control channel
 - Negotiate ports and/or addresses on the control channel for subsidiary data channels
 - Dynamically open the negotiated data channels
- Protocol suites, e.g. Netbios and DNS

Spoofing Applications

- Often times ridiculously easy
- Fake Client
 - Telnet to an SMTP server and enter mail from whoever you want
 - Authenticating email servers
 - Require a password
 - Require a mail download before server takes send requests
- Fake server

– Phishing: misdirect user to bogus server

Example

- > telnet target.com 25
- HELO target.com
- MAIL FROM:<obama@whitehouse.gov>
- RCPT TO:<target@target.com>
- DATA
- Just kidding about that stimulus package.
- ,
- QUIT
- •
- See RFC 821 for SMTP syntax

DHCP

- Built on older BOOTP protocol (which was built on even older RARP protocol)
 - Used by diskless Suns
- Enables dynamic allocation of IP address and related information
- Runs over UDP
- No security considered in the design. What are the problems?
 - Bogus DHCP servers handing out addresses of attackers choice
 - Hand out DNS and default gateways of attacker's choice
 - Bogus clients grabbing addresses
- IETF attempted to add DHCP authentication but rather late in the game to do this.
- Other solutions?
 - Physically secure networks
 - Use IPSec

Domain Name System (DNS)

- Hierarchical service to resolve domain names to IP addresses.
 - The name space is divided into non-overlapping zones
 - E.g., consider shinrich.cs.uiuc.edu.
 - DNS servers in the chain. One for .edu, one for .uiuc.edu, and one for .cs.uiuc.edu
- Can have primary and secondary DNS servers per zone. Use TCP based zone transfer to keep up to date
- Like DHCP, no security designed in
 - But at least the DNS server is not automatically discovered
 - Although this information can be dynamically set via DHCP

DNS Problems

- DNS Open relays
 - Makes it look like good DNS server is authoritative server to bogus name
 - Enables amplification DoS attack
 - http://www.us-cert.gov/reading_room/DNS-recu
- DNS Cache Poisoning
 - Change the name to address mapping to something more desirable to the attacker

DNS Transaction

- Step 5 ns.domain.com answers "www.domain.com is at 1.2.3.4"
- Step 6 ISP nameserver sends reply to user "www.domain.com is at 1.2.3.4"

DNS Pictures thanks to http://www.lurhq.com/dnscache.pdf

DNS Communication

- Use UDP
- Requests and responses have matching 16 bit transaction Ids
- Servers can be configured as
 - Authoritative Nameserver
 - Officially responsible for answering requests for a domain
 - Recursive
 - Pass on requests to other authoritative servers
 - Both (this can be the problem)

DNS Cache Poisoning

- Older implementations would just accept additional information in a reply
 - e.g. A false authoritative name server
 - Fixed by bailiwick checking. Additional records only include entries from the requested domain
- Now to spoof a reply must anticipate the correct transaction ID
 - Only 16 bits
 - Random selection of ID isn't always the greatest

Bailiwick Checks

\$ dig @ns1.example.com www.example.com
;; ANSWER SECTION:
www.example.com. 120 IN A 192.168.1.10
;; AUTHORITY SECTION:

example.com. 86400 IN NS

ns1.example.com. example.com. 86400

ns2.example.com.

;; ADDITIONAL SECTION: ns1.example.com. 604800 IN A 192.168.2.20 ns2.example.com. 604800 IN A 192.168.3.30 www.linuxjournal.com. 43200 IN A 66.240.243.113

IN NS

Tricking the Transaction ID's

- Step 1 Attacker sends a large number of queries to the victim nameserver, all for the same domain name
- Step 2 Attacker sends spoofed replies giving fake answers for the queries it made
- Step 3 At a later time, victim PC sends a request for the spoofed domain name
- Step 4 Victim nameserver returns fake information to victim PC

Kaminsky's Observations

- Most implementations don't randomize source ports (making the TID collision more likely)
- Try to poison through the additional information (side stepping the bailiwick check) ig doesnotexist.example.com check is doesnotexist.example.com

doesnotexist.example.com. 120 IN A 10.10.10.10

;; AUTHORITY SECTION: example.com. 86400 IN NS www.example.com.

;; ADDITIONAL SECTION: www.example.com. 604800 IN A 10.10.10.20

DNSSEC

- Seeks to solve the trust issues of DNS
- Uses a key hierarchy for verification
- Has been under development for a decade and still not really deployed
- Provides authentication, not confidentiality
- DNS Threat Analysis in RFC 3833.

Summary

- IPv4 not designed with security in mind
- Complexity can be exploited
 - Poor implementations
 - Edge cases in standards
- Bootstrapping can be exploited
 - Easy of configuration vs strong trust