
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 26
Word Embeddings and
Recurrent Nets

CS447: Natural Language Processing (J. Hockenmaier)

Where we’re at
Lecture 25: Word Embeddings and neural LMs
Lecture 26: Recurrent networks
Lecture 27: Sequence labeling and Seq2Seq
Lecture 28: Review for the final exam
Lecture 29: In-class final exam

�2

CS447: Natural Language Processing (J. Hockenmaier)

Recap

�3

CS447: Natural Language Processing (J. Hockenmaier)

What are neural nets?
Simplest variant: single-layer feedforward net

�4

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary
classification tasks:

Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:

K output units (a vector)
Each output unit  

yi = class i
Return argmaxi(yi)

CS447: Natural Language Processing (J. Hockenmaier)

Input layer: vector x

 Hidden layer: vector h1

Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

�5

Hidden layer: vector hn

Output layer: vector y

… … …
… … …
… … ….

CS447: Natural Language Processing (J. Hockenmaier)

Multiclass models: softmax(yi)
Multiclass classification = predict one of K classes.

Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution
over the N outputs

For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
(NB: This is just logistic regression)

�6

CS546 Machine Learning in NLP

Neural Language
Models

�7

CS447: Natural Language Processing (J. Hockenmaier)

Neural Language Models
LMs define a distribution over strings: P(w1….wk)
LMs factor P(w1….wk) into the probability of each word:  
P(w1….wk) = P(w1)·P(w2|w1)·P(w3|w1w2)·…· P(wk | w1….wk−1)

A neural LM needs to define a distribution over the V words in
the vocabulary, conditioned on the preceding words.

Output layer: V units (one per word in the vocabulary) with
softmax to get a distribution
Input: Represent each preceding word by its  
d-dimensional embedding.

- Fixed-length history (n-gram): use preceding n−1 words
- Variable-length history: use a recurrent neural net

�8

CS546 Machine Learning in NLP

Neural n-gram models
Task: Represent P(w | w1…wk) with a neural net
Assumptions:
-We’ll assume each word wi ∈ V in the context is a dense
vector v(w): v(w) ∈ Rdim(emb)

-V is a finite vocabulary, containing UNK, BOS, EOS tokens.
-We’ll use a feedforward net with one hidden layer h

The input x = [v(w1),…,v(wk)] to the NN  
represents the context w1…wk

Each wi ∈ V is a dense vector v(w)
The output layer is a softmax:

P(w | w1…wk) = softmax(hW2 + b2)

�9

CS546 Machine Learning in NLP

Neural n-gram models
Architecture:

Input Layer: x = [v(w1)….v(wk)]
 v(w) = E[w]

Hidden Layer: h = g(xW1 + b1)
Output Layer: P(w | w1…wk) = softmax(hW2 + b2)

Parameters:
Embedding matrix: E ∈ R|V|×dim(emb)

Weight matrices and biases:
 first layer: W1 ∈ Rk·dim(emb)×dim(h) b1 ∈ Rdim(h)

 second layer: W2 ∈ Rk·dim(h)×|V| b2 ∈ R|V|

�10

CS546 Machine Learning in NLP

Output embeddings: Each column in W2 is a dim(h)-
dimensional vector that is associated with a
vocabulary item w ∈ V 
 
 
 
h is a dense (non-linear) representation of the context
Words that are similar appear in similar contexts.
Hence their columns in W2 should be similar.

Input embeddings: each row in the embedding
matrix is a representation of a word.

Word representations as by-product of
neural LMs

�11

hidden layer h

output layer

CS546 Machine Learning in NLP

Obtaining Word
Embeddings

�12

CS447: Natural Language Processing (J. Hockenmaier)

Word Embeddings (e.g. word2vec)
Main idea:
If you use a feedforward network to predict the
probability of words that appear in the context of (near)
an input word, the hidden layer of that network provides
a dense vector representation of the input word.

Words that appear in similar contexts (that have high
distributional similarity) wils have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pretrained embeddings can be downloaded)

�13

CS546 Machine Learning in NLP

Word2Vec (Mikolov et al. 2013)
Modification of neural LM:
-Two different context representations:
CBOW or Skip-Gram
-Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

Task: train a classifier to predict a word from its
context (or the context from a word)
 
Idea: Use the dense vector representation that this
classifier uses as the embedding of the word.

�14

CS546 Machine Learning in NLP

CBOW vs Skip-Gram

�15

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: CBOW
CBOW = Continuous Bag of Words

Remove the hidden layer, and the order information of
the context.
Define context vector c as a sum of the embedding
vectors of each context word ci, and score s(t,c) as tc
 c = ∑i=1…k ci

 s(t, c) = tc

�16

P(+ | t, c) =
1

1 + exp(− (t ⋅ c1 + t ⋅ c2 + … + t ⋅ ck)

CS546 Machine Learning in NLP

Word2Vec: SkipGram
Don’t predict the current word based on its context, 
but predict the context based on the current word.

Predict surrounding C words (here, typically C = 10).
Each context word is one training example

�17

CS447: Natural Language Processing (J. Hockenmaier)

Skip-gram algorithm
1. Treat the target word and a neighboring

context word as positive examples.
2. Randomly sample other words in the

lexicon to get negative samples
3. Use logistic regression to train a

classifier to distinguish those two cases
4. Use the weights as the embeddings

11/27/18
�18

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Training objective:
Maximize log-likelihood of training data D+ ∪ D-:

�19

L (Q,D,D0) = Â
(w,c)2D

logP(D = 1|w,c)

+ Â
(w,c)2D0

logP(D = 0|w,c)

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam a pinch ...
 c1 c2 target c3 c4

11/27/18
�20

Asssume	context	words	are	those	in	+/-	2	
word	window

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal
Given a tuple (t,c) = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real
context word:
P(D = + | t, c)
P(D= − | t, c) = 1 − P(D = + | t, c)

11/27/18
�21

CS447: Natural Language Processing (J. Hockenmaier)

How to compute p(+ | t, c)?
Intuition:
Words are likely to appear near similar words
Model similarity with dot-product!

Similarity(t,c) ∝ t · c
Problem:
Dot product is not a probability! 
(Neither is cosine)
	 		

�22

CS447: Natural Language Processing (J. Hockenmaier)

Turning the dot product into a
probability
The sigmoid lies between 0 and 1:

 
 
 
 

�23

σ(x) =
1

1 + exp(−x)

P(+ | t, c) =
1

1 + exp(−t ⋅ c)

P(− | t, c) = 1 −
1

1 + exp(−t ⋅ c)
=

exp(−t ⋅ c)
1 + exp(−t ⋅ c)

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Distinguish “good” (correct) word-context pairs (D=1), 
from “bad” ones (D=0) 

Probabilistic objective:
P(D = 1 | t, c) defined by sigmoid: 
 

 
P(D = 0 | t, c) = 1 — P(D = 0 | t, c)
P(D = 1 | t, c) should be high when (t, c) ∈ D+, and low when
(t,c) ∈ D-

�24

P(D = 1|w,c) = 1
1+ exp(�s(w,c))

CS447: Natural Language Processing (J. Hockenmaier)

For all the context words
Assume all context words c1:k are independent:
 
 
 
 

�25

P(+ | t, c1:k) =
k

∏
i=1

1
1 + exp(−t ⋅ ci)

log P(+ | t, c1:k) =
k

∑
i=1

log
1

1 + exp(−t ⋅ ci)

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Training data: D+ ∪ D-

D+ = actual examples from training data

Where do we get D- from?
Lots of options.
Word2Vec: for each good pair (w,c), sample k words and add
each wi as a negative example (wi,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)

�26

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam a pinch ...
	 c1 c2 t c3 c4

	Training data: input/output pairs centering on apricot
	Assume a +/- 2 word window

�27

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam a pinch ...
	 c1 c2 t c3 c4

	Training data: input/output pairs centering on apricot
	Assume a +/- 2 word window
	Positive examples:  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	For each positive example, create k negative examples,  
using noise words:
	(apricot, aardvark), (apricot, puddle)…

�28

CS447: Natural Language Processing (J. Hockenmaier)

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

�29

CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings
Compare to human scores on word
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	

�30

CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood

�31

CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’) =
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) =
vector(‘Rome’)

�32

CS546 Machine Learning in NLP

Using Word
Embeddings

�33

CS546 Machine Learning in NLP

Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

-Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
-Option 2: Keep E fixed, but add another hidden layer that is
learned for your task
-Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use rows
of E’ = ET (adapts all embeddings, not specific words)
-Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and
use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific
words)

�34

CS546 Machine Learning in NLP

More on embeddings
Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of
K outcomes, e.g. POS tags, etc.) and learn an embedding
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.
Initialization matters: use random weights, but in special range
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use
Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

�35

CS447: Natural Language Processing (J. Hockenmaier)

Dense embeddings you can
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

�36

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural
Nets (RNNs)

�37

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural Nets (RNNs)
The input to a feedforward net has a fixed size.

How do we handle variable length inputs?
In particular, how do we handle variable length
sequences?

RNNs handle variable length sequences

There are 3 main variants of RNNs, which differ in
their internal structure:

basic RNNs (Elman nets) 
LSTMs
GRUs

�38

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward
architecture (which predicts a string w0…wn one word
at a time) such that the output of the current step (wi)
is given as additional input to the next time step
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

�39

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier)

Basic RNNs
Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden
layer at the previous time step

�40

input

output

hidden

CS447: Natural Language Processing (J. Hockenmaier)

Basic RNNs
Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden
layer at the previous time step

�41

CS447: Natural Language Processing (J. Hockenmaier)

A basic RNN unrolled in time

�42

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language modeling
If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string w0w1…wn wn+1
(where w0 = <s>, and wn+1 = <\s>), feed in wi as input
at time step i and compute

�43

∏
i=1..n+1

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for language generation
To generate a string w0w1…wn wn+1 (where w0 = <s>,
and wn+1 = <\s>), give w0 as first input, and then pick
the next word according to the computed probability

Feed this word in as input into the next layer.

Greedy decoding: always pick the word with the
highest probability

(this only generates a single sentence — why?)
Sampling: sample according to the given distribution

�44

P(wi |w0 . . . wi−1)

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for sequence labeling
In sequence labeling, we want to assign a label or tag
ti to each word wi

Now the output layer gives a distribution over the T
possible tags.

The hidden layer contains information about the
previous words and the previous tags.  

To compute the probability of a tag sequence t1…tn for
a given string w1…wn feed in wi (and possibly ti-1) as
input at time step i and compute P(ti | w1…wi-1, t1…ti-1)

�45

CS447: Natural Language Processing (J. Hockenmaier)

RNNs for sequence classification
If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the
sequence as input to a feedforward net:

�46

CS447: Natural Language Processing (J. Hockenmaier)

Stacked RNNs
We can create an RNN that has “vertical” depth (at
each time step) by stacking:

�47

CS447: Natural Language Processing (J. Hockenmaier)

Bidirectional RNNs
Unless we need to generate a sequence, we can run
two RNNs over the input sequence — one in the
forward direction, and one in the backward direction.
Their hidden states will capture different context
information.

�48

CS447: Natural Language Processing (J. Hockenmaier)

Further extensions
Character and substring embeddings

We can also learn embeddings for individual letters.  
This helps generalize better to rare words, typos, etc.
These embeddings can be combined with word embeddings
(or used instead of an UNK embedding)

Context-dependent embeddings (ELMO, BERT, ….)
Word2Vec etc. are static embeddings: they induce a type-
based lexicon that doesn’t handle polysemy etc.
Context-dependent embeddings produce token-specific
embeddings that depend on the particular context in which a
word appears.

�49

