CS447: Natural Language Processing

http.//courses.engtr.illinois.edu/cs447

Lecture 26
Word Embeddings and
Recurrent Nets

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Where we’re at

_ecture 25: Word Embeddings and neural LMs
_ecture 26: Recurrent networks

_ecture 27: Sequence labeling and Seg2Seq
_ecture 28: Review for the final exam

_ecture 29: In-class final exam

CS447: Natural Language Processing (J. Hockenmaier)

Recap

CS447: Natural Language Processing (J. Hockenmaier)

What are neural nets?

Simplest variant: single-layer feedforward net

For binary Output unit: scalar y

classification tasks: T
Single output unit (;Q Input layer: vector x

Return 1ify > 0.5
Return O otherwise

For multiclass Output layer: vector y
classification tasks:
K output units (a vector)) Input layer: vector x
Each output unit
yi=class |

Return argmaxi(y;)

CS447: Natural Language Processing (J. Hockenmaier) 4

Multi-layer feedforward networks

We can generalize this to multi-layer feedforward nets

T Output layer: vector y
Hidden layer: vector hn

Hidden layer: vector hy

Input layer: vector x

CS447: Natural Language Processing (J. Hockenmaier) 5

Multiclass models: softmax(y;)

Multiclass classification = predict one of K classes.
Return the class i with the highest score: argmaxi(y;)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution

over the N outputs

For a vector z = (zo...zx): P(i) = softmax(zi) = exp(zi) / X k=0.x exp(zx)
(NB: This is just logistic regression)

CS447: Natural Language Processing (J. Hockenmaier)

Neural Language
Models

CS546 Machine Learning in NLP

Neural Language Models

LMs define a distribution over strings: P(wi....wk)

LMs factor P(w1....wx) into the probability of each word:
P(w1....wk) = P(w1) - P(walw1) - P(wslwiwz) - ... - P(Wk | W1....Wk-1)

A neural LM needs to define a distribution over the V words in
the vocabulary, conditioned on the preceding words.

Output layer: V units (one per word in the vocabulary) with
softmax to get a distribution
Input: Represent each preceding word by its
d-dimensional embedding.
- Fixed-length history (n-gram): use preceding n—1 words
- Variable-length history: use a recurrent neural net

CS447: Natural Language Processing (J. Hockenmaier) 8

Neural n-gram models

Task: Represent P(w | wi...wx) with a neural net

Assumptions:
-We'll assume each word wi € V in the context is a dense
vector v(w): v(w) € Rdim(emb)
-V is a finite vocabulary, containing UNK, BOS, EOS tokens.
-We'll use a feedforward net with one hidden layer h

The input x = [v(wi),...,v(wk)] to the NN
represents the context wi...wx
Each wi € V is a dense vector v(w)

The output layer is a softmax:
P(w | wi...wx) = softmax(hW?2 + b2)

CS546 Machine Learning in NLP

Neural n-gram models

Architecture:

Input Layer: X =[v(Wi)....v(Wy)]
V(W) = Ejw]
Hidden Layer: h = g(xW! + bl)
Output Layer: P(w | wl...wk) = softmax(hW?2 + b?)

Parameters:
Embedding matrix: E & RIVixdim(emb)
Weight matrices and biases:
first layer: W! &€ Rk-dim(embjxdimth) p1 & Rdim(h)
second layer: W2 & Rk-dim(hxIVl b2 € RV

CS546 Machine Learning in NLP 10

Word representations as by-product of
neural LMs

Output embeddings: Each column in W2 is a dim(h)-
dimensional vector that is associated with a
vocabulary itemw e V

output layer m
hidden layer h QQOQO Q
h is a dense (non-linear) representation of the context

Words that are similar appear in similar contexts.
Hence their columns in W2 should be similar.

Input embeddings: each row in the embedding

matrix is a representation of a word.
CS546 Machine Learning in NLP 11

Obtaining Word
Embeaddings

CS546 Machine Learning in NLP

Word Embeddings (e.g. word2vec)

Main idea:

If you use a feedforward network to predict the
probability of words that appear in the context of (near)
an input word, the hidden layer of that network provides
a dense vector representation of the input word.

Words that appear in similar contexts (that have high
distributional similarity) wils have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pretrained embeddings can be downloaded)

CS447: Natural Language Processing (J. Hockenmaier) 13

Word2Vec (Mikolov et al. 2013)

Modification of neural LM:

- Two different context representations:
CBOW or Skip-Gram

- Two different optimization objectives:
Negative sampling (NS) or hierarchical softmax

Task: train a classifier to predict a word from its
context (or the context from a word)

ldea: Use the dense vector representation that this
classifier uses as the embedding of the word.

CS546 Machine Learning in NLP 14

CBOW vs Skip-Gram

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
w(t-1) w(t-1)

SUM
H)) H

w(t+1) w(t+1)

w(t+2) w(t+2)

CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

CS546 Machine Learning in NLP

15

Word2Vec: CBOW
CBOW = Continuous Bag of Words

Remove the hidden layer, and the order information of
the context.

Define context vector ¢ as a sum of the embedding
vectors of each context word ci, and score s(t,c) as tc

C=Yi=1.. kCi
s(t, c) =tc
1
P(+ |t,c) =

l+exp(—({-ci+t-cy+...+1)

CS447: Natural Language Processing (J. Hockenmaier) 16

Word2Vec: SkipGram

Don’t predict the current word based on its context,
but predict the context based on the current word.

Predict surrounding C words (here, typically C = 10).
Each context word is one training example

CS546 Machine Learning in NLP 17

Skip-gram algorithm

1. Treat the target word and a neighboring
context word as positive examples.

2. Randomly sample other words in the
lexicon to get negative samples

3. Use logistic regression to train a
classifier to distinguish those two cases

4. Use the weights as the embeddings

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling

Training objective:
Maximize log-likelihood of training data D+ u D-:

Z(©,D,D')= Y logP(D=1|w.c)

+) logP(D=0|w,c)
(w,c)eD’

CS546 Machine Learning in NLP 19

Skip-Gram Training Data

Training sentence:
tablespoon of apricot jam a
Cc1 c2 target c3 c4

Asssume context words are those in +/- 2
word window

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal

Given a tuple (t,c) = target, context

(apricot, Jam)
(apricot, aardvark)

Return the probability that c is a real
context word:

P(D= +1t ¢

P(D=- 1t c)=1-PD=+11t c)

CS447: Natural Language Processing (J. Hockenmaier)

How to compute p(+ 1 t, c)?

Intuition:

Words are likely to appear near similar words

Model similarity with dot-product!
Similarity(t,c) ot - c

Problem:

Dot product is not a probability!
(Neither is cosine)

CS447: Natural Language Processing (J. Hockenmaier)

Turning the dot product into a
probability

The sigmoid lies between 0 and 1:

| |
o(x) = .

) I +exp(—x) 7= //

. - % ,
1
P(+|t,c) =
1+ exp(—t-c)
P(—|tc)=1— exp(—t-c)

1 + exp(—t-c) B 1 + exp(—t-c)

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: Negative Sampling

Distinguish “good” (correct) word-context pairs (D=1),
from “bad” ones (D=0)

Probabilistic objective:
P(D=11t,c)defined by sigmoid:

1
P(D=1|w,c) =

14+ exp(—s(w,c))

P(D=0It,c)=1—P(D=0It,c)
P(D=11t,c)should be high when (t, c) € D+, and low when
(t,c) € D-

CS546 Machine Learning in NLP 24

For all the context words

Assume all context words c+:x are independent:

k
1
P(+|te=]]
P 1 + exp(—1-)

1
1 +exp(—t-¢)

k
log P(+ |t,cpp) = 2 log
i=1

CS447: Natural Language Processing (J. Hockenmaier)

25

Word2Vec: Negative Sampling

Training data: D+ u D-
D+ = actual examples from training data

Where do we get D- from?
Lots of options.

Word2Vec: for each good pair (w,c), sample k words and add
each w; as a negative example (w;,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency

or according to smoothed variant where freq’(w) = freq(w)°-7°
(This gives more weight to rare words)

CS546 Machine Learning in NLP 26

Skip-Gram Training data

Training sentence:
tablespoon of apricot jam a
o c2 t c3 c4

Training data: input/output pairs centering on apricot
Assume a +/- 2 word window

CS447: Natural Language Processing (J. Hockenmaier) 27

Skip-Gram Training data

Training sentence:
tablespoon of apricot jam a
o c2 t c3 c4

Training data: input/output pairs centering on apricot
Assume a +/- 2 word window

Positive examples:
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)

For each positive example, create k negative examples,
using noise words:

(apricot, aardvark), (apricot, puddle)...

CS447: Natural Language Processing (J. Hockenmaier) 28

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don'’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples

Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings

Compare to human scores on word

similarity-type tasks:
WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)

TOEFL dataset: Levied is closest in meaning to: imposed,
believed, requested, correlated

CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings

Similarity depends on window size C

C = +2 The nearest words to Hogwarts:
Sunnydale

Evernight

C = +5 The nearest words to Hogwarts:
Dumbledore

Malfoy
halfblood

CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture
relational meaning!

vector(‘king’) - vector(‘man’) + vector(‘woman’) =
vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) =
vector(‘Rome’)

WOMAN QUEENS
AUNT

VAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

CS447: Natural Language Processing (J. Hockenmaier)

Using Word
Embeaddings

CS546 Machine Learning in NLP

Using pre-trained embeddings

Assume you have pre-trained embeddings E.
How do you use them in your model?

- Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.

- Option 2: Keep E fixed, but add another hidden layer that is
learned for your task

- Option 3: Learn matrix T € dim(emb)xdim(emb) and use rows
of E'= ET (adapts all embeddings, not specific words)
- Option 4: Keep E fixed, but learn matrix A e R!VIxdim(emb) gnd

use E'=E + AorE’=ET + A (this learns to adapt specific
words)

CS546 Machine Learning in NLP 34

More on embeddings

Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of
K outcomes, e.g. POS tags, etc.) and learn an embedding
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.

Initialization matters: use random weights, but in special range
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use

Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

CS546 Machine Learning in NLP 35

Dense embeddings you can
download!

Word2vec (Mikolov et al.)

https://code.google.com/archive/p/word2vec/
Fasttext hitp://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent Neural
Nets (RNNs)

Recurrent Neural Nets (RNNSs)

The input to a feedforward net has a fixed size.

How do we handle variable length inputs?
In particular, how do we handle variable length
sequences?

RNNs handle variable length sequences

There are 3 main variants of RNNs, which differ in

their internal structure:

basic RNNs (Elman nets)
LSTMs

GRUs

CS447: Natural Language Processing (J. Hockenmaier)

38

Recurrent neural networks (RNNSs)

Basic RNN: Modify the standard feedforward
architecture (which predicts a string wo...wnone word
at a time) such that the output of the current step (wi)
IS given as additional input to the next time step

(when predicting the output for wi1).
“Output” — typically (the last) hidden layer.

output m output QQQ) [QQQ] QQQ] QQQJ

igden [@Q@) hicven [QOOHOOOHOOSH OO
i (008 v [000) [000) [000) 000

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier) 39

Basic RNNs

Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden

layer at the previous time step

output
hidden

input Jrre]

CS447: Natural Language Processing (J. Hockenmaier) 40

Basic RNNs

Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden

layer at the previous time step

(Vi)
[
C Ny)
o
C N1) C X)

CS447: Natural Language Processing (J. Hockenmaier) 41

A basic RNN unrolled in time

\j

CS447: Natural Language Processing (J. Hockenmaier)

42

RNNs for language modeling

If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words for
the next word.

To compute the probability of a string wowi...wn Wit

(wWhere wo = <s>, and w1 = <\s>), feed in w; as input
at time step 1 and compute

CS447: Natural Language Processing (J. Hockenmaier) 43

RNNs for language generation

To generate a string wowi...wn Wns1 (Where wo = <s>,
and wni1 = <\s>), give wo as first input, and then pick
the next word according to the computed probability

Pw;|wy...w;_)
Feed this word in as input into the next layer.
Greedy decoding: always pick the word with the
highest probability

(this only generates a single sentence — why?)
Sampling: sample according to the given distribution

CS447: Natural Language Processing (J. Hockenmaier) 44

RNNSs for sequence labeling

In sequence labeling, we want to assign a label or tag
ti to each word w;

Now the output layer gives a distribution over the T
possible tags.

The hidden layer contains information about the
previous words and the previous tags.

To compute the probability of a tag sequence t;...t, for
a given string wi...wyfeed in wi (and possibly ti.1) as
iInput at time step i and compute P(til wi...wi.1, t1...ti.1)

CS447: Natural Language Processing (J. Hockenmaier) 45

RNNSs for sequence classification

If we just want to assign a label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the

sequence as input to a feedforward net:

o
—
&
C

RNN

H

X > %% HY(C X3)

CS447: Natural Language Processing (J. Hockenmaier)

46

Stacked RNNs

We can create an RNN that has “vertical” depth (at
each time step) by stacking:

C_Ya
C_viy HC vy (Y D, Y
A A A
RNN 3
A A A A
RNN 2
A A A A
RNN 1
A A A A
C X4) C Xo) C X3) (Xn)

CS447: Natural Language Processing (J. Hockenmaier) 47

Bidirectional RNNs

Unless we need to generate a sequence, we can run

two RNNs over the input sequence — one in the
forward direction, and one in the backward direction.

Their hidden states will capture different context

iInformation.
C v HC Y2 HC Y3
%\T’ gi[\f % AiT
RNN 2 (Right to Left) <]
A A A
RNN 1 (Left to Right) [>
C 1) C 2) C 3) (Xn)

CS447: Natural Language Processing (J. Hockenmaier) 48

Further extensions

Character and substring embeddings

We can also learn embeddings for individual letters.
This helps generalize better to rare words, typos, etc.

These embeddings can be combined with word embeddings
(or used instead of an UNK embedding)

Context-dependent embeddings (ELMO, BERT,)

Word2Vec etc. are static embeddings: they induce a type-
based lexicon that doesn’t handle polysemy etc.

Context-dependent embeddings produce token-specific
embeddings that depend on the particular context in which a
word appears.

CS447: Natural Language Processing (J. Hockenmaier) 49

