
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 25
Neural Approaches to NLP

CS447: Natural Language Processing (J. Hockenmaier)

Where we’re at
Lecture 25: Word Embeddings and neural LMs
Lecture 26: Recurrent networks
Lecture 27: Sequence labeling and Seq2Seq
Lecture 28: Review for the final exam
Lecture 29: In-class final exam

�2

CS447: Natural Language Processing (J. Hockenmaier)

Motivation

�3

CS447: Natural Language Processing (J. Hockenmaier)

NLP research questions redux
How do you represent (or predict) words?

Do you treat words in the input as atomic categories, as
continuous vectors, or as structured objects?
How do you handle rare/unseen words, typos, spelling
variants, morphological information?
Lexical semantics: do you capture word meanings/senses?

How do you represent (or predict) word sequences?
Sequences = sentences, paragraphs, documents, dialogs,…
As a vector, or as a structured object?

How do you represent (or predict) structures?
Structures = labeled sequences, trees, graphs, formal
languages (e.g. DB records/queries, logical representations)
How do you represent “meaning”?

�4

CS447: Natural Language Processing (J. Hockenmaier)

Two core problems for NLP
Ambiguity: Natural language is highly ambiguous
-Words have multiple senses and different POS
-Sentences have a myriad of possible parses
-etc.

Coverage (compounded by Zipf’s Law)
-Any (wide-coverage) NLP system will come across words or
constructions that did not occur during training.
-We need to be able to generalize from the seen events during
training to unseen events that occur during testing (i.e. when
we actually use the system).
-We typically have very little labeled training data

�5

CS447: Natural Language Processing (J. Hockenmaier)

Statistical models for NLP
NLP makes heavy use of statistical models as a way
to handle both the ambiguity and the coverage issues.
-Probabilistic models (e.g. HMMs, MEMMs, CRFs, PCFGs)
-Other machine learning-based classifiers

Basic approach:
-Decide which output is desired  
(may depend on available labeled training data)
-Decide what kind of model to use
-Define features that could be useful (this may require further
processing steps, i.e. a pipeline)
-Train and evaluate the model.
- Iterate: refine/improve the model and/or the features, etc.

�6

CS447: Natural Language Processing (J. Hockenmaier)

Example: Language Modeling
A language model defines a distribution P(w) over the
strings w = w1w2..wi… in a language
Typically we factor P(w) such that we compute the
probability word by word:
 P(w) = P(w1) P(w2 | w1)… P(wi | w1…wi−1)

Standard n-gram models make the Markov assumption
that wi depends only on the preceding n−1 words:
 P(wi | w1…wi−1) := P(wi | wi−n+1…wi−1)
We know that this independence assumption is invalid
(there are many long-range dependencies), but it is
computationally and statistically necessary

(we can’t store or estimate larger models)
�7

CS447: Natural Language Processing (J. Hockenmaier)

Motivation for neural approaches
to NLP: Markov assumptions
Traditional sequence models (n-gram language
models, HMMs, MEMMs, CRFs) make rigid Markov
assumptions (bigram/trigram/n-gram).

Recurrent neural nets (RNNs, LSTMs) can capture
arbitrary-length histories without requiring more
parameters.

�8

CS447: Natural Language Processing (J. Hockenmaier)

Features for NLP
Many systems use explicit features:
-Words (does the word “river” occur in this sentence?)
-POS tags
-Chunk information, NER labels
-Parse trees or syntactic dependencies  
(e.g. for semantic role labeling, etc.)

Feature design is usually a big component of building
any particular NLP system.

Which features are useful for a particular task and model typically requires
experimentation, but there are a number of commonly used ones (words, POS tags,
syntactic dependencies, NER labels, etc.)

Features define equivalence classes of data points.
Assumption: they provide useful abstractions & generalizations

Features may be noisy
(because they are compute by other NLP systems)

�9

CS447: Natural Language Processing (J. Hockenmaier)

Motivation for neural approaches to NLP:
Features can be brittle
Word-based features:

How do we handle unseen/rare words?

Many features are produced by other NLP systems
(POS tags, dependencies, NER output, etc.)
These systems are often trained on labeled data.

Producing labeled data can be very expensive.
We typically don’t have enough labeled data from the domain
of interest.
We might not get accurate features for our domain of interest.

�10

CS447: Natural Language Processing (J. Hockenmaier)

Features in neural approaches
Many of the current successful neural approaches to
NLP do not use traditional discrete features.

Words in the input are often represented as dense
vectors (aka. word embeddings, e.g. word2vec)

Traditional approaches: each word in the vocabulary is a
separate feature. No generalization across words that have
similar meanings.
Neural approaches: Words with similar meanings have similar
vectors. Models generalize across words with similar meanings

Other kinds of features (POS tags, dependencies,
etc.) are often ignored.

�11

CS447: Natural Language Processing (J. Hockenmaier)

Neural approaches to
NLP

�12

CS447: Natural Language Processing (J. Hockenmaier)

What is “deep learning”?
Neural networks, typically with several hidden layers

(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive  

Very impressive performance gains in computer vision
(ImageNet) and speech recognition over the last
several years.

Neural nets have been around for decades.
Why have they suddenly made a comeback?

Fast computers (GPUs!) and (very) large datasets have made
it possible to train these very complex models.

�13

CS447: Natural Language Processing (J. Hockenmaier)

What are neural nets?
Simplest variant: single-layer feedforward net

�14

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary
classification tasks:

Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:

K output units (a vector)
Each output unit  

yi = class i
Return argmaxi(yi)

CS447: Natural Language Processing (J. Hockenmaier)

Multiclass models: softmax(yi)
Multiclass classification = predict one of K classes.

Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RN into a distribution
over the N outputs

For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
(NB: This is just logistic regression)

�15

CS447: Natural Language Processing (J. Hockenmaier)

Single-layer feedforward networks
Single-layer (linear) feedforward network

y = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward networks:
Pass wx + b through a non-linear activation function,
e.g. y = tanh(wx + b)

�16

CS546 Machine Learning in NLP

Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x)

Useful for output units (probabilities) [0,1] range
Hyperbolic tangent: tanh(x) = (e2x −1)/(e2x+1)

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
 htanh(x) = −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit: ReLU(x) = max(0, x)

Useful for internal units

�17

x < 0

.x/ D .0; x/ D
(

0 x < 0

x :

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

1.0

0.5

0.0

-0.5

-1.0
-6 -4 -2 0 2 4 6

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

!f

!x

!f

!x

!f

!x

!f

!x

L. Oy; y/ Oy
y

L. Oy; y/ Oy
y

1

CS447: Natural Language Processing (J. Hockenmaier)

Input layer: vector x

 Hidden layer: vector h1

Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

�18

Hidden layer: vector hn

Output layer: vector y

… … …
… … …
… … ….

CS447: Natural Language Processing (J. Hockenmaier)

Challenges in using NNs for NLP
Our input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.
We typically want to learn a mapping (embedding) from
discrete words (input) to dense vectors. 
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length
vector. How do you represent a variable-length
sequence as a vector?

Use recurrent neural nets: read in one word at the time to
predict a vector, use that vector and the next word to predict a
new vector, etc.

�19

CS447: Natural Language Processing (J. Hockenmaier)

How does NLP use NNs?
Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context
from a word).
This gives a dense vector representation of each word

Neural language models:
Use recurrent neural networks (RNNs) to predict word
sequences 
More advanced: use LSTMs (special case of RNNs)

Sequence-to-sequence (seq2seq) models:
From machine translation: use one RNN to encode source
string, and another RNN to decode this into a target string.
Also used for automatic image captioning, etc.

Recursive neural networks:
Used for parsing

�20

CS447: Natural Language Processing (J. Hockenmaier)

Neural Language Models
LMs define a distribution over strings: P(w1….wk)
LMs factor P(w1….wk) into the probability of each word:  
P(w1….wk) = P(w1)·P(w2|w1)·P(w3|w1w2)·…· P(wk | w1….wk−1)

A neural LM needs to define a distribution over the V words in
the vocabulary, conditioned on the preceding words.

Output layer: V units (one per word in the vocabulary) with
softmax to get a distribution
Input: Represent each preceding word by its  
d-dimensional embedding.

- Fixed-length history (n-gram): use preceding n−1 words
- Variable-length history: use a recurrent neural net

�21

CS447: Natural Language Processing (J. Hockenmaier)

Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward
architecture (which predicts a string w0…wn one word
at a time) such that the output of the current step (wi)
is given as additional input to the next time step
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

�22

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

CS447: Natural Language Processing (J. Hockenmaier)

Word Embeddings (e.g. word2vec)
Main idea:
If you use a feedforward network to predict the
probability of words that appear in the context of (near)
an input word, the hidden layer of that network provides
a dense vector representation of the input word.

Words that appear in similar contexts (that have high
distributional similarity) wils have very similar vector
representations.

These models can be trained on large amounts of raw
text (and pretrained embeddings can be downloaded)

�23

CS447: Natural Language Processing (J. Hockenmaier)

Sequence-to-sequence (seq2seq)
Task (e.g. machine translation):

Given one variable length sequence as input,  
return another variable length sequence as output

Main idea:
Use one RNN to encode the input sequence (“encoder”)
Feed the last hidden state as input to a second RNN
(“decoder”) that then generates the output sequence.

�24

CS546 Machine Learning in NLP

Neural Language
Models

�25

CS546 Machine Learning in NLP

What is a language model?
Probability distribution over the strings in a language,
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only
preceding n−1 words:

P(wi | w1…wi-1) =def P(wi | wi−n+1…wi−1)

To handle variable length strings, we assume each string starts
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉

�26

CS546 Machine Learning in NLP

Shortcomings of traditional  
n-gram models
-Models get very large (and sparse) as n increases
-We can’t generalize across similar contexts
-Markov (independence) assumptions in n-gram models are
too strict

Solutions offered by neural models:
-Do not represent context words as distinct, discrete symbols,
but use a dense vector representation where similar words
have similar vectors [today’s class]
-Use recurrent nets that can encode variable-lengths contexts 
[next class]

�27

CS546 Machine Learning in NLP

Neural n-gram models
Task: Represent P(w | w1…wk) with a neural net
Assumptions:
-We’ll assume each word wi ∈ V in the context is a dense
vector v(w): v(w) ∈ Rdim(emb)

-V is a finite vocabulary, containing UNK, BOS, EOS tokens.
-We’ll use a feedforward net with one hidden layer h

The input x = [v(w1),…,v(wk)] to the NN  
represents the context w1…wk

Each wi ∈ V is a dense vector v(w)
The output layer is a softmax:

P(w | w1…wk) = softmax(hW2 + b2)

�28

CS546 Machine Learning in NLP

Neural n-gram models
Architecture:

Input Layer: x = [v(w1)….v(wk)]
 v(w) = E[w]

Hidden Layer: h = g(xW1 + b1)
Output Layer: P(w | w1…wk) = softmax(hW2 + b2)

Parameters:
Embedding matrix: E ∈ R|V|×dim(emb)

Weight matrices and biases:
 first layer: W1 ∈ Rk·dim(emb)×dim(h) b1 ∈ Rdim(h)

 second layer: W2 ∈ Rk·dim(h)×|V| b2 ∈ R|V|

�29

CS546 Machine Learning in NLP

Neural n-gram models
Advantages over traditional n-gram models:
- Increasing the order requires only a small linear increase in
the number of parameters.

W1 goes from Rk·dim(emb)×dim(h) to R(k+1)·dim(emb)×dim(h)

- Increasing the number of words in the vocabulary also leads
only to a linear increase in the vocabulary
-Easy to incorporate more context: just add more input units
-Easy to generalize across contexts (embeddings!)

Computing softmax over large V is expensive:
requires matrix-vector multiplication with W2,  
followed by |V| exponentiations
Solution (during training): only sample a subset of the
vocabulary (or use hierarchical softmax)

�30

CS546 Machine Learning in NLP

Output embeddings: Each column in W2 is a dim(h)-
dimensional vector that is associated with a
vocabulary item w ∈ V 
 
 
 
h is a dense (non-linear) representation of the context
Words that are similar appear in similar contexts.
Hence their columns in W2 should be similar.

Input embeddings: each row in the embedding
matrix is a representation of a word.

Word representations as by-product of
neural LMs

�31

hidden layer h

output layer

CS546 Machine Learning in NLP

Modifications to neural LM
If we want good word representations (rather than
good language models), we can modify this model: 

1) We can also take the words that follow into account:
compute P(w3 | w1w2_w4w5) instead of P(w5 | w1w2w3w4)
Now, the input context c = w1w2_w4w5, not w1w2w3w4

2) We don’t need a distribution over the output word.
We just want the correct output word to have a higher score
s(w,c) than other words w’. We remove the softmax, define
s(w,c) as the activation of the output unit for w with input
context c and use a (margin-based) ranking loss:
Loss for predicting a random word w’ instead of w: 
 L(w, c, w’) = max(0, 1 − (s(w, c) − s(w’, c))

�32

CS546 Machine Learning in NLP

Obtaining Word
Embeddings

�33

CS546 Machine Learning in NLP

Word2Vec (Mikolov et al. 2013)
Modification of neural LM:
-Two different context representations:
CBOW or Skip-Gram
-Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

Task: train a classifier to predict a word from its
context (or the context from a word)
 
Idea: Use the dense vector representation that this
classifier uses as the embedding of the word.

�34

CS546 Machine Learning in NLP

CBOW vs Skip-Gram

�35

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

CS447: Natural Language Processing (J. Hockenmaier)

Word2Vec: CBOW
CBOW = Continuous Bag of Words

Remove the hidden layer, and the order information of
the context.
Define context vector c as a sum of the embedding
vectors of each context word ci, and score s(t,c) as tc
 c = ∑i=1…k ci

 s(t, c) = tc

�36

P(+ | t, c) =
1

1 + exp(− (t ⋅ c1 + t ⋅ c2 + … + t ⋅ ck)

CS546 Machine Learning in NLP

Word2Vec: SkipGram
Don’t predict the current word based on its context, 
but predict the context based on the current word.

Predict surrounding C words (here, typically C = 10).
Each context word is one training example

�37

CS447: Natural Language Processing (J. Hockenmaier)

Skip-gram algorithm
1. Treat the target word and a neighboring

context word as positive examples.
2. Randomly sample other words in the

lexicon to get negative samples
3. Use logistic regression to train a

classifier to distinguish those two cases
4. Use the weights as the embeddings

11/27/18
�38

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Training objective:
Maximize log-likelihood of training data D+ ∪ D-:

�39

L (Q,D,D0) = Â
(w,c)2D

logP(D = 1|w,c)

+ Â
(w,c)2D0

logP(D = 0|w,c)

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam a pinch ...
 c1 c2 target c3 c4

11/27/18
�40

Asssume	context	words	are	those	in	+/-	2	
word	window

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Goal
Given a tuple (t,c) = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real
context word:
P(D = + | t, c)
P(D= − | t, c) = 1 − P(D = + | t, c)

11/27/18
�41

CS447: Natural Language Processing (J. Hockenmaier)

How to compute p(+ | t, c)?
Intuition:
Words are likely to appear near similar words
Model similarity with dot-product!

Similarity(t,c) ∝ t · c
Problem:
Dot product is not a probability! 
(Neither is cosine)
	 		

�42

CS447: Natural Language Processing (J. Hockenmaier)

Turning the dot product into a
probability
The sigmoid lies between 0 and 1:

 
 
 
 

�43

σ(x) =
1

1 + exp(−x)

P(+ | t, c) =
1

1 + exp(−t ⋅ c)

P(− | t, c) = 1 −
1

1 + exp(−t ⋅ c)
=

exp(−t ⋅ c)
1 + exp(−t ⋅ c)

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Distinguish “good” (correct) word-context pairs (D=1), 
from “bad” ones (D=0) 

Probabilistic objective:
P(D = 1 | t, c) defined by sigmoid: 
 

 
P(D = 0 | t, c) = 1 — P(D = 0 | t, c)
P(D = 1 | t, c) should be high when (t, c) ∈ D+, and low when
(t,c) ∈ D-

�44

P(D = 1|w,c) = 1
1+ exp(�s(w,c))

CS447: Natural Language Processing (J. Hockenmaier)

For all the context words
Assume all context words c1:k are independent:
 
 
 
 

�45

P(+ | t, c1:k) =
k

∏
i=1

1
1 + exp(−t ⋅ ci)

log P(+ | t, c1:k) =
k

∑
i=1

log
1

1 + exp(−t ⋅ ci)

CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Training data: D+ ∪ D-

D+ = actual examples from training data

Where do we get D- from?
Lots of options.
Word2Vec: for each good pair (w,c), sample k words and add
each wi as a negative example (wi,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)

�46

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam a pinch ...
	 c1 c2 t c3 c4

	Training data: input/output pairs centering on apricot
	Assume a +/- 2 word window

�47

CS447: Natural Language Processing (J. Hockenmaier)

Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam a pinch ...
	 c1 c2 t c3 c4

	Training data: input/output pairs centering on apricot
	Assume a +/- 2 word window
	Positive examples:  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	For each positive example, create k negative examples,  
using noise words:
	(apricot, aardvark), (apricot, puddle)…

�48

CS447: Natural Language Processing (J. Hockenmaier)

Summary: How to learn word2vec (skip-gram)
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

�49

CS447: Natural Language Processing (J. Hockenmaier)

Evaluating embeddings
Compare to human scores on word
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset
(Huang et al., 2012)
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	

�50

CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood

�51

CS447: Natural Language Processing (J. Hockenmaier)

Analogy: Embeddings capture
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’) =
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) =
vector(‘Rome’)

�52

CS546 Machine Learning in NLP

Using Word
Embeddings

�53

CS546 Machine Learning in NLP

Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

-Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
-Option 2: Keep E fixed, but add another hidden layer that is
learned for your task
-Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use rows
of E’ = ET (adapts all embeddings, not specific words)
-Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and
use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific
words)

�54

CS546 Machine Learning in NLP

More on embeddings
Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of
K outcomes, e.g. POS tags, etc.) and learn an embedding
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.
Initialization matters: use random weights, but in special range
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use
Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task

�55

CS447: Natural Language Processing (J. Hockenmaier)

Dense embeddings you can
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

�56

