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Where we’re at
Lecture 25: Word Embeddings and neural LMs
Lecture 26: Recurrent networks
Lecture 27: Sequence labeling and Seq2Seq
Lecture 28: Review for the final exam
Lecture 29: In-class final exam
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Motivation
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NLP research questions redux
How do you represent (or predict) words?

Do you treat words in the input as atomic categories, as 
continuous vectors, or as structured objects?
How do you handle rare/unseen words, typos, spelling 
variants, morphological information?
Lexical semantics: do you capture word meanings/senses?

How do you represent (or predict) word sequences?
Sequences = sentences, paragraphs, documents, dialogs,…
As a vector, or as a structured object?

How do you represent (or predict) structures?
Structures = labeled sequences, trees, graphs, formal 
languages (e.g. DB records/queries, logical representations)
How do you represent “meaning”? 
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Two core problems for NLP
Ambiguity: Natural language is highly ambiguous
-Words have multiple senses and different POS
-Sentences have a myriad of possible parses
-etc.

Coverage (compounded by Zipf’s Law)
-Any (wide-coverage) NLP system will come across words or 
constructions that did not occur during training. 
-We need to be able to generalize from the seen events during 
training to unseen events that occur during testing (i.e. when 
we actually use the system).
-We typically have very little labeled training data
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Statistical models for NLP
NLP makes heavy use of statistical models as a way 
to handle both the ambiguity and the coverage issues.
-Probabilistic models (e.g. HMMs, MEMMs, CRFs, PCFGs)
-Other machine learning-based classifiers 

Basic approach:
-Decide which output is desired  
(may depend on available labeled training data)
-Decide what kind of model to use
-Define features that could be useful (this may require further 
processing steps, i.e. a pipeline)
-Train and evaluate the model.
- Iterate: refine/improve the model and/or the features, etc.
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Example: Language Modeling
A language model defines a distribution P(w) over the 
strings w = w1w2..wi… in a language
Typically we factor P(w) such that we compute the 
probability word by word: 
     P(w) = P(w1) P(w2 | w1)… P(wi | w1…wi−1)

Standard n-gram models make the Markov assumption 
that wi  depends only on the preceding n−1 words: 
    P(wi | w1…wi−1) :=  P(wi | wi−n+1…wi−1)
We know that this independence assumption is invalid 
(there are many long-range dependencies), but it is 
computationally and statistically necessary

(we can’t store or estimate larger models)
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Motivation for neural approaches 
to NLP: Markov assumptions
Traditional sequence models (n-gram language 
models, HMMs, MEMMs, CRFs) make rigid Markov 
assumptions (bigram/trigram/n-gram). 

Recurrent neural nets (RNNs, LSTMs) can capture 
arbitrary-length histories without requiring more 
parameters. 
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Features for NLP
Many systems use explicit features:
-Words (does the word “river” occur in this sentence?)
-POS tags
-Chunk information, NER labels
-Parse trees or syntactic dependencies  
(e.g. for semantic role labeling, etc.) 

Feature design is usually a big component of building 
any particular NLP system.

Which features are useful for a particular task and model typically requires 
experimentation, but there are a number of commonly used ones (words, POS tags, 
syntactic dependencies, NER labels, etc.)

Features define equivalence classes of data points.
Assumption: they provide useful abstractions & generalizations

Features may be noisy 
(because they are compute by  other NLP systems)
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Motivation for neural approaches to NLP:  
Features can be brittle
Word-based features:

How do we handle unseen/rare words? 

Many features are produced by other NLP systems 
(POS tags, dependencies, NER output, etc.)
These systems are often trained on labeled data.

Producing labeled data can be very expensive.
We typically don’t have enough labeled data from the domain 
of interest.
We might not get accurate features for our domain of interest.
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Features in neural approaches
Many of the current successful neural approaches to 
NLP do not use traditional discrete features.

Words in the input are often represented as dense 
vectors (aka. word embeddings, e.g. word2vec)

Traditional approaches: each word in the vocabulary is a 
separate feature. No generalization across words that have 
similar meanings. 
Neural approaches: Words with similar meanings have similar 
vectors. Models generalize across words with similar meanings

Other kinds of features (POS tags, dependencies, 
etc.) are often ignored. 
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Neural approaches to 
NLP
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What is “deep learning”? 
Neural networks, typically with several hidden layers 

(depth = # of hidden layers)
Single-layer neural nets are linear classifiers
Multi-layer neural nets are more expressive  

Very impressive performance gains in computer vision 
(ImageNet) and speech recognition over the last 
several years.

Neural nets have been around for decades. 
Why have they suddenly made a comeback?

Fast computers (GPUs!) and (very) large datasets have made 
it possible to train these very complex models.  
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What are neural nets?
Simplest variant: single-layer feedforward net
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Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary 
classification tasks: 

Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass  
classification tasks:

K output units (a vector)
Each output unit  

yi = class i
Return argmaxi(yi)
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Multiclass models: softmax(yi)
Multiclass classification = predict one of K classes.

Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax 
function, which maps real-valued vectors in RN into a distribution 
over the N outputs

For a vector z = (z0…zK): P(i) = softmax(zi) = exp(zi) ∕ ∑k=0..K exp(zk)
(NB: This is just logistic regression)
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Single-layer feedforward networks
Single-layer (linear) feedforward network 

y  = wx + b (binary classification)
w is a weight vector, b is a bias term (a scalar)

This is just a linear classifier (aka Perceptron) 
(the output y is a linear function of the input x)

Single-layer non-linear feedforward  networks:
Pass wx + b through a non-linear activation function,      
e.g. y  = tanh(wx + b)
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Nonlinear activation functions
Sigmoid (logistic function): σ(x) = 1/(1 + e−x) 

Useful for output units (probabilities)  [0,1] range
Hyperbolic tangent:  tanh(x) = (e2x −1)/(e2x+1) 

Useful for internal units: [-1,1] range
Hard tanh (approximates tanh)
     htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Rectified Linear Unit:    ReLU(x) = max(0, x)

Useful for internal units 
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Input layer: vector x

 Hidden layer: vector h1

Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets
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Challenges in using NNs for NLP
Our input and output variables are discrete:
words, labels, structures.

NNs work best with continuous vectors.
We typically want to learn a mapping (embedding) from 
discrete words (input) to dense vectors. 
We can do this with (simple) neural nets and related methods.

The input to a NN is (traditionally) a fixed-length 
vector. How do you represent a variable-length 
sequence as a vector?

Use recurrent neural nets: read in one word at the time to 
predict a vector, use that vector and the next word to predict a 
new vector, etc. 
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How does NLP use NNs?
Word embeddings (word2vec, Glove, etc.)

Train a NN to predict a word from its context (or the context 
from a word).
This gives a dense vector representation of each word

Neural language models:
Use recurrent neural networks (RNNs) to predict word 
sequences 
More advanced: use LSTMs (special case of RNNs)

Sequence-to-sequence (seq2seq) models:
From machine translation: use one RNN to encode source 
string, and another RNN to decode this into a target string.
Also used for automatic image captioning, etc.

Recursive neural networks:
Used for parsing
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Neural Language Models
LMs define a distribution over strings: P(w1….wk) 
LMs factor P(w1….wk) into the probability of each word:  
P(w1….wk) = P(w1)·P(w2|w1)·P(w3|w1w2)·…· P(wk | w1….wk−1)

A neural LM needs to define a distribution over the V words in 
the vocabulary, conditioned on the preceding words.

Output layer: V units (one per word in the vocabulary) with 
softmax to get a distribution
Input: Represent each preceding word by its  
d-dimensional embedding. 

- Fixed-length history (n-gram): use preceding n−1 words
- Variable-length history: use a recurrent neural net
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Recurrent neural networks (RNNs)
Basic RNN: Modify the standard feedforward 
architecture (which predicts a string w0…wn one word 
at a time) such that the output of the current step (wi) 
is given as additional input to the next time step 
(when predicting the output for wi+1).

“Output” — typically (the last) hidden layer.

�22

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net



CS447: Natural Language Processing (J. Hockenmaier)

Word Embeddings (e.g. word2vec)
Main idea: 
If you use a feedforward network to predict the 
probability of words that appear in the context of (near) 
an input word, the hidden layer of that network provides 
a dense vector representation of the input word. 

Words that appear in similar contexts (that have high 
distributional similarity) wils have very similar vector 
representations. 

These models can be trained on large amounts of raw 
text (and pretrained embeddings can be downloaded)
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Sequence-to-sequence (seq2seq) 
Task (e.g. machine translation):

Given one variable length sequence as input,  
return another variable length sequence as output

Main idea:
Use one RNN to encode the input sequence (“encoder”)
Feed the last hidden state as input to a second RNN 
(“decoder”) that then generates the output sequence. 
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Neural Language 
Models
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What is a language model?
Probability distribution over the strings in a language, 
typically factored into distributions P(wi | …)  
for each word:

P(w) = P(w1…wn) = ∏i P(wi | w1…wi-1)

N-gram models assume each word depends only 
preceding n−1 words: 

P(wi | w1…wi-1)  =def  P(wi | wi−n+1…wi−1)
  

To handle variable length strings, we assume each string starts 
with n−1 start-of-sentence symbols (BOS), or〈S〉 
and ends in a special end-of-sentence symbol (EOS) or〈\S〉
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Shortcomings of traditional  
n-gram models
-Models get very large (and sparse) as n increases
-We can’t generalize across similar contexts 
-Markov (independence) assumptions in n-gram models are 
too strict

Solutions offered by neural models:
-Do not represent context words as distinct, discrete symbols, 
but use a dense vector representation where similar words 
have similar vectors [today’s class]
-Use recurrent nets that can encode variable-lengths contexts 
[next class]
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Neural n-gram models
Task: Represent P(w | w1…wk) with a neural net
Assumptions:
-We’ll assume each word wi ∈ V  in the context is a dense 
vector v(w):  v(w) ∈ Rdim(emb)

-V is a finite vocabulary, containing UNK, BOS, EOS tokens.
-We’ll use a feedforward net with one hidden layer h

The input x = [v(w1),…,v(wk)] to the NN  
represents the context w1…wk

Each wi ∈ V is a dense vector v(w)
The output layer is a softmax:

P(w | w1…wk) = softmax(hW2 + b2)
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Neural n-gram models
Architecture:

Input Layer:            x = [v(w1)….v(wk)]
                                v(w) = E[w]

Hidden Layer:         h = g(xW1 + b1)
Output Layer:          P(w | w1…wk) = softmax(hW2 + b2)

Parameters:
Embedding matrix: E ∈ R|V|×dim(emb)

Weight matrices and biases: 
                            first layer: W1 ∈ Rk·dim(emb)×dim(h)      b1 ∈ Rdim(h)

                            second layer: W2 ∈ Rk·dim(h)×|V|             b2 ∈ R|V|
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Neural n-gram models
Advantages over traditional n-gram models:
- Increasing the order requires only a small linear increase in 
the number of parameters. 

W1 goes from Rk·dim(emb)×dim(h) to R(k+1)·dim(emb)×dim(h)

- Increasing the number of words in the vocabulary also leads 
only to a linear increase in the vocabulary
-Easy to incorporate more context: just add more input units
-Easy to generalize across contexts (embeddings!)

Computing softmax over large V is expensive:
requires matrix-vector multiplication with W2,  
followed by |V| exponentiations 
Solution (during training): only sample a subset of the 
vocabulary (or use hierarchical softmax)
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Output embeddings: Each column in W2 is a dim(h)-
dimensional vector that is associated with a 
vocabulary item w ∈ V 
 
 
 
h is a dense (non-linear) representation of the context 
Words that are similar appear in similar contexts.
Hence their columns in W2 should be similar. 

Input embeddings: each row in the embedding 
matrix is a representation of a word. 

Word representations as by-product of 
neural LMs

�31
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Modifications to neural LM
If we want good word representations (rather than 
good language models), we can modify this model: 

1) We can also take the words that follow into account:  
compute P(w3 | w1w2_w4w5) instead of P(w5 | w1w2w3w4)
Now, the input context c = w1w2_w4w5, not  w1w2w3w4

2) We don’t need a distribution over the output word. 
We just want the correct output word to have a higher score 
s(w,c) than other words w’. We remove the softmax, define 
s(w,c) as the activation of the output unit for w with input 
context c and use a (margin-based) ranking loss: 
Loss for predicting a random word w’ instead of w: 
    L(w, c, w’) = max(0, 1 − (s(w, c) − s(w’, c))
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Obtaining Word 
Embeddings
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Word2Vec (Mikolov et al. 2013)
Modification of neural LM:
-Two different context representations:
CBOW or Skip-Gram
-Two different optimization objectives:  
Negative sampling (NS) or hierarchical softmax

Task: train a classifier to predict a word from its 
context (or the context from a word)
 
Idea: Use the dense vector representation that this 
classifier uses as the embedding of the word.
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CBOW vs Skip-Gram
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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Word2Vec: CBOW
CBOW = Continuous Bag of Words

Remove the hidden layer, and the order information of 
the context.
Define context vector c as a sum of the embedding 
vectors of each context word ci, and score s(t,c) as tc
              c = ∑i=1…k ci

                    s(t, c) = tc
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Word2Vec: SkipGram
Don’t predict the current word based on its context, 
but predict the context based on the current word.

Predict surrounding C words (here, typically C = 10).
Each context word is one training example
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Skip-gram algorithm
1. Treat the target word and a neighboring 

context word as positive examples.
2. Randomly sample other words in the 

lexicon to get negative samples
3. Use logistic regression to train a 

classifier to distinguish those two cases
4. Use the weights as the embeddings

11/27/18
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Word2Vec: Negative Sampling
Training objective: 
Maximize log-likelihood of training data D+ ∪ D-:
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Skip-Gram Training Data
Training sentence:
... lemon, a tablespoon of apricot jam   a   pinch ... 
                         c1       c2   target  c3    c4

11/27/18
�40
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Skip-Gram Goal
Given a tuple (t,c)  = target, context
(apricot, jam)
(apricot, aardvark)

Return the probability that c is a real 
context word:
P(D =  + | t, c)
P( D= −  | t, c) = 1 − P(D = + | t, c)

11/27/18
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How to compute p(+ | t, c)?
Intuition:
Words are likely to appear near similar words
Model similarity with dot-product!

Similarity(t,c)  ∝ t · c
Problem:
Dot product is not a probability! 
(Neither is cosine)
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Turning the dot product into a 
probability
The sigmoid lies between 0 and 1:
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P( + | t, c) =
1

1 + exp(−t ⋅ c)

P( − | t, c) = 1 −
1

1 + exp(−t ⋅ c)
=

exp(−t ⋅ c)
1 + exp(−t ⋅ c)



CS546 Machine Learning in NLP

Word2Vec: Negative Sampling
Distinguish “good” (correct) word-context pairs (D=1), 
from “bad” ones (D=0) 

Probabilistic objective:  
P( D = 1 | t, c ) defined by sigmoid: 
 

 
P( D = 0 | t, c ) = 1 — P( D = 0 | t, c )
P( D = 1 | t, c ) should be high when (t, c) ∈ D+, and low when 
(t,c) ∈ D-
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For all the context words
Assume all context words c1:k are independent:
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Word2Vec: Negative Sampling
Training data: D+ ∪ D-

D+ = actual examples from training data

Where do we get D- from? 
Lots of options.
Word2Vec: for each good pair (w,c), sample k words and add 
each wi as a negative example (wi,c) to D’
(D’ is k times as large as D)

Words can be sampled according to corpus frequency  
or according to smoothed variant where freq’(w) = freq(w)0.75

(This gives more weight to rare words)
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Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam   a   pinch ... 
	                         c1              c2     t        c3    c4

	Training data: input/output pairs centering on apricot 
	Assume a +/- 2 word window
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Skip-Gram Training data
	Training sentence:
	... lemon, a tablespoon of apricot jam   a   pinch ... 
	                         c1              c2     t        c3    c4

	Training data: input/output pairs centering on apricot 
	Assume a +/- 2 word window
	Positive examples:  
(apricot, tablespoon), (apricot, of), (apricot, jam), (apricot, a)
	For each positive example, create k negative examples,  
using noise words: 
	(apricot, aardvark), (apricot, puddle)… 
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Summary: How to learn word2vec (skip-gram) 
embeddings

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings 

Train a logistic regression classifier to distinguish words 
that co-occur in corpus from those that don’t

Pairs of words that co-occur are positive examples
Pairs of words that don't co-occur are negative examples
Train the classifier to distinguish these by slowly adjusting 
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.
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Evaluating embeddings
Compare to human scores on word 
similarity-type tasks:

WordSim-353 (Finkelstein et al., 2002)
SimLex-999 (Hill et al., 2015)
Stanford Contextual Word Similarity (SCWS) dataset 
(Huang et al., 2012) 
TOEFL dataset: Levied	is	closest	in	meaning	to:	imposed,	
believed,	requested,	correlated	

�50



CS447: Natural Language Processing (J. Hockenmaier)

Properties of embeddings
Similarity depends on window size C

C = ±2 The nearest words to Hogwarts:	
Sunnydale	
Evernight	
 
C = ±5 The nearest words to Hogwarts:	
Dumbledore	
Malfoy	
hal@lood
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Analogy: Embeddings capture 
relational meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’)  = 
vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)  = 
vector(‘Rome’)
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Using Word 
Embeddings
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Using pre-trained embeddings
Assume you have pre-trained embeddings E.
How do you use them in your model?

-Option 1: Adapt E during training
Disadvantage: only words in training data will be affected.
-Option 2: Keep E fixed, but add another hidden layer that is 
learned for your task
-Option 3: Learn matrix T ∈ dim(emb)×dim(emb) and use rows 
of E’ = ET  (adapts all embeddings, not specific words)
-Option 4: Keep E fixed, but learn matrix Δ ∈ R|V|×dim(emb) and 
use E’ = E + Δ or E’ = ET + Δ (this learns to adapt specific 
words)

�54



CS546 Machine Learning in NLP

More on embeddings
Embeddings aren’t just for words!

You can take any discrete input feature (with a fixed number of 
K outcomes, e.g. POS tags, etc.) and learn an embedding 
matrix for that feature.

Where do we get the input embeddings from?
We can learn the embedding matrix during training.
Initialization matters: use random weights, but in special range 
(e.g. [-1/(2d), +(1/2d)] for d-dimensional embeddings), or use 
Xavier initialization
We can also use pre-trained embeddings
LM-based embeddings are useful for many NLP task
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CS447: Natural Language Processing (J. Hockenmaier)

Dense embeddings you can 
download!
Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/
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