
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 23:
Phrase-based MT
(corrected)

CS447: Natural Language Processing (J. Hockenmaier)

Recap: 
IBM models for MT

�2

 CS447 Natural Language Processing

Use the noisy channel (Bayes rule) to get the best
(most likely) target translation e for source sentence f: 
 

The translation model P(f | e) requires alignments a 
 
 

Generate f and the alignment a with P(f, a | e): 
 

m = #words  
in fj

marginalize (=sum)  
over all alignments a

The IBM models

�3

noisy channelarg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

probability of  
alignment aj

probability 
of word fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

 CS447 Natural Language Processing

Representing word alignments

�4

1 2 3 4 5 6 7 8
Marie a traversé le lac à la nage

0 NULL
1 Mary
2 swam
3 across
4 the
5 lake

Position 1 2 3 4 5 6 7 8
Foreign Marie a traversé le lac à la nage

Alignment 1 3 3 4 5 0 0 2

Every source word f[i] is aligned to one target word e[j] (incl. NULL).  
We represent alignments as a vector a (of the same length as the
source) with a[i] = j

 CS447 Natural Language Processing

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

0 1 2 3 4 5
NULL Mary swam across the lake

IBM model 1: Generative process
For each target sentence e = e1..en of length n:  
 
 

1. Choose a length m for the source sentence (e.g m = 8)
 
2. Choose an alignment a = a1...am for the source sentence
Each aj corresponds to a word ei in e: 0 ≤ aj ≤ n 
 
 

3. Translate each target word eaj into the source language

�5

0 1 2 3 4 5
NULL Mary swam across the lake

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
Translation Marie a traversé le lac à la nage

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

 CS447 Natural Language Processing

Expectation-Maximization (EM)
1. Initialize a first model, M0  

2. Expectation (E) step:  
Go through training data to gather expected counts
〈count(lac, lake)〉

3. Maximization (M) step:  
Use expected counts to compute a new model Mi+1
Pi+1(lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉

4.Check for convergence: 
Compute log-likelihood of training data with Mi+1  
If the difference between new and old log-likelihood
smaller than a threshold, stop. Else go to 2.

�6

 CS447 Natural Language Processing

The E-step

�7

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based
translation models

�8

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based translation models
Assumption: fundamental units of translation are phrases: 
 
 
 

Phrase-based model of P(F | E):
1. Split target sentence deterministically into phrases ep1...epn
2. Translate each target phrase epi into source phrase fpi  

with translation probability φ(fpi |epi)
3. Reorder foreign phrases with distortion probability  
d(ai-bi-1) = c|ai-bi-1 -1|
ai = start position of source phrase generated by ei
bi-1 = end position of source phrase generated by ei-1

�9

��
����	��  

President (in Cantonese): Good morning, Honourable Members. 

CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based models of P(f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch] [is] [at home] [this week]  

Translate each target phrase epi into source phrase
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability P(fp |{ fpi }):  
 [Diese Woche] [ist] [die grüne Hexe] [zuhause]  
 

�10

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})

CS447: Natural Language Processing (J. Hockenmaier)

Translation probability P(fpi | epi)
Phrase translation probabilities can be obtained from
a phrase table: 
 
 
 
 
 
 
 
 

This requires phrase alignment

�11

EP FP count
green witch grüne Hexe …

at home zuhause 10534
at home daheim 9890

is ist 598012
this week diese Woche ….

CS447: Natural Language Processing (J. Hockenmaier)

Word alignment

�12

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week

CS447: Natural Language Processing (J. Hockenmaier)

 Phrase alignment

�13

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week

CS447: Natural Language Processing (J. Hockenmaier)

Obtaining phrase alignments
We’ll skip over details, but here’s the basic idea:  

For a given parallel corpus (F-E)
1. Train two word aligners, (F→E and E→F)
2. Take the intersection of these alignments  
 to get a high-precision word alignment
3. Grow these high-precision alignments  
 until all words in both sentences are included  
 in the alignment.

Consider any pair of words in the union of the alignments, and
incrementally add them to the existing alignments

4. Consider all phrases that are consistent with  
 this improved word alignment

�14

CS447: Natural Language Processing (J. Hockenmaier)

Decoding  
(for phrase-based MT)

�15 CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based models of P(f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch] [is] [at home] [this week]  

Translate each target phrase epi into source phrase
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability P(fp |{ fpi }):  
 [Diese Woche] [ist] [die grüne Hexe] [zuhause]  
 

�16

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})

CS447: Natural Language Processing (J. Hockenmaier)

Translating
How do we translate a foreign sentence (e.g. “Diese
Woche ist die grüne Hexe zuhause”) into English?
-We need to find ê = argmaxe P(f | e)P(e)
-There is an exponential number of candidate
translations e
-But we can look up phrase translations ep and  

P(fp | ep) in the phrase table:  

�17

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 1.00.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6 green witch 0.7

is this week 0.4 the green witch 0.7

CS447: Natural Language Processing (J. Hockenmaier)

Generating a (random) translation
1. Pick the first Target phrase ep1 from the candidate list.

 P := PLM(<s> ep1)PTrans(fp1 | ep1)
 E = the, F= <….die…>

2. Pick the next target phrase ep2 from the candidate list
 P := P × PLM(ep2 | ep1)PTrans(fp2 | ep2)
 E = the green witch, F = <….die grüne Hexe...>
3. Keep going: pick target phrases epi until the entire source
sentence is translated
 P := P × PLM(epi | ep1…i-1)PTrans(fpi | epi)
 E = the green witch is, F = <….ist die grüne Hexe...>

�18

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 0.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6   green witch 0.7

is this week 0.4 the green witch 0.7

1

4 2

3 5

CS447: Natural Language Processing (J. Hockenmaier)

Finding the best translation
How can we find the best translation efficiently?

There is an exponential number of possible translations. 

We will use a heuristic search algorithm
We cannot guarantee to find the best (= highest-scoring)
translation, but we’re likely to get close.

We will use a “stack-based” decoder
(If you’ve taken Intro to AI: this is A* (“A-star”) search)
We will score partial translations based on how good we
expect the corresponding completed translation to be.
Or, rather: we will score partial translations on how bad we expect the
corresponding complete translation to be.  
That is, our scores will be costs (high=bad, low=good)

�19 CS447: Natural Language Processing (J. Hockenmaier)

Scoring partial translations
Assign expected costs to partial translations (E, F):

expected_cost(E,F) = current_cost(E,F)  
 + future_cost(E,F)

The current cost is based on the score  
of the partial translation (E, F)
 e.g. current_cost(E,F) = logP(E)P(F | E)
The (estimated) future cost is a lower bound on the
actual cost of completing the partial translation (E, F):

true_cost(E,F) (= current_cost(E,F) + actual_future_cost(E,F))  
≥ expected_cost(E,F) (= current_cost(E,F) + est_future_cost(E,F))

because actual_future_cost(E,F) ≥ est_future_cost(E,F)
(The estimated future cost ignores the distortion cost)

�20

CS447: Natural Language Processing (J. Hockenmaier)

Stack-based decoding
Maintain a priority queue (=’stack’) of partial translations
(hypotheses) with their expected costs.
Each element on the stack is open (we haven’t yet pursued this
hypothesis) or closed (we have already pursued this hypothesis) 

At each step:
-Expand the best open hypothesis (the open translation with
the lowest expected cost) in all possible ways.
-These new translations become new open elements  
on the stack.
-Close the best open hypothesis. 

Additional Pruning (n-best / beam search):  
Only keep the n best open hypotheses around

�21 CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�22

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: current translation
F: which words in F
F: have we covered?

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�23

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

We’re done with this
node now (all
continuations have a
lower cost)

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�24

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

Expand one of these
new yellow nodes
next

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�25

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E:
F: *******
Cost: 999

E: the at home
F: ***d*H*
Cost: 983

E: the
F: ***d***
Cost: 500

Expand the yellow
node with the lowest
cost

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�26

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

Expand the next node  
with the lowest cost

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�27

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding

�28

Cost: 852

E: the
F: ***d***
Cost: 500

Cost: 993

...

...

Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

Cost: 983

 
Cost: 999

Cost: 500 Cost: 560

Cost:
732

Cost:
705

Cost:
800

We always expand the
best (lowest-cost)

node, even if it’s not the
last one introduced

CS447: Natural Language Processing (J. Hockenmaier)

MT evaluation

�29 CS447: Natural Language Processing (J. Hockenmaier)

Evaluate candidate translations against several reference
translations. 

C1: It is a guide to action which ensures that the military always obeys the commands  
of the party. 
C2: It is to insure the troops forever hearing the activity guidebook that party direct

R1: It is a guide to action that ensures that the military will forever heed Party commands.
R2: It is the guiding principle which guarantees the military forces always being under the
command of the Party.
R3: It is the practical guide for the army always to heed the directions of the party.

The BLEU score is based on N-gram precision:
How many n-grams in the candidate translation occur also in
one of the reference translation?

�30

Automatic evaluation: BLEU

CS447: Natural Language Processing (J. Hockenmaier)

BLEU details
For n ∈ {1,…,4}, compute the (modified) precision of all n-grams: 
 
 

MaxFreqref(‘the party’) = max. count of ‘the party’ in one reference
translation.
Freqc(‘the party’) = count of ‘the party’ in candidate translation c.

Penalize short candidate translations by a brevity penalty BP
c = length (number of words) of the whole candidate translation corpus
r = Pick for each candidate the reference translation that is closest in length; 
 sum up these lengths.

 
Brevity penalty BP = exp(1-c/r) for c ≤ r; BP = 1 for c>r  
(BP ranges from e for c=0 to 1 for c=r)

�31

Precn =

P
c2C

P
n-gram2c MaxFreqref(n-gram)

P
c2C

P
-gram2c Freqc(n-gram)

CS447: Natural Language Processing (J. Hockenmaier)

BLEU score
The BLEU score is the geometric mean of the precision of the
unigrams, bigrams, trigrams, quadrigrams,  
weighted by the brevity penalty BP.

�32

BLEU = BP⇥ exp

1

N

NX

n=1

log Precn

!

CS447: Natural Language Processing (J. Hockenmaier)

Human evaluation
We want to know whether the translation is “good” English,
and whether it is an accurate translation of the original.

-Ask human raters to judge the fluency and the adequacy  
of the translation (e.g. on a scale of 1 to 5)
-Correlated with fluency is accuracy on cloze task:

Give rater the sentence with one word replaced by blank. 
Ask rater to guess the missing word in the blank.
-Similar to adequacy is informativeness  
Can you use the translation to perform some task  
(e.g. answer multiple-choice questions about the text)

�33 CS498JH: Introduction to NLP

Summary:
Machine Translation

�34

CS447: Natural Language Processing (J. Hockenmaier)

Machine translation models
Current MT models all rely on statistics.
 
Many current models do estimate P(E | F) directly,  
but may use features based on language models
(capturing P(E)) and IBM-style translation models
(P(F | E)) internally.

There are a number of syntax-based models,  
e.g. using synchronous context-free grammars, which
consist of pairs of rules for the two languages in which
each RHS NT in language A corresponds to a RHS
NT in language B:

 Language A: XP → YP ZP Language B: XP → ZP YP
�35 CS447: Natural Language Processing (J. Hockenmaier)

More recent developments
Neural network-based approaches:

Recurrent neural networks (RNN) can model sequences  
(e.g. strings, sentences, etc.)
Use one RNN (the encoder) to process  
the input in the source language
Pass its output to another RNN (the decoder)  
to generate the output in the target language
 
See e.g. http://www.tensorflow.org/tutorials/seq2seq/
index.md#sequence-to-sequence_basics

�36

