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Recap: 
IBM models for MT
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Use the noisy channel (Bayes rule) to get the best 
(most likely) target translation e for source sentence f: 
 

The translation model P(f | e) requires alignments a 
 
 

Generate f and the alignment a with P(f, a | e): 
 

m = #words  
in fj

marginalize (=sum)  
over all alignments a

The IBM models
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Representing word alignments
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1 2 3 4 5 6 7 8
Marie a traversé le lac à la nage

0 NULL
1 Mary
2 swam
3 across
4 the
5 lake

Position 1 2 3 4 5 6 7 8
Foreign Marie a traversé le lac à la nage

Alignment 1 3 3 4 5 0 0 2

Every source word f[i] is aligned to one target word e[j] (incl. NULL).  
We represent alignments as a vector a (of the same length as the 
source) with a[i] = j
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Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

0 1 2 3 4 5
NULL Mary swam across the lake

IBM model 1: Generative process
For each target sentence e = e1..en of length n:  
 
 

1. Choose a length m  for the source sentence (e.g m = 8)
 
2. Choose an alignment a = a1...am for the source sentence
Each aj corresponds to a word ei  in e: 0 ≤ aj ≤ n 
 
 

3. Translate each target word eaj into the source language
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0 1 2 3 4 5
NULL Mary swam across the lake

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
Translation Marie a traversé le lac à la nage

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
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Expectation-Maximization (EM)
1. Initialize a first model, M0  

2. Expectation (E) step:  
Go through training data to gather expected counts 
〈count(lac, lake)〉 

3. Maximization (M) step:  
Use expected counts to compute a new model Mi+1 
Pi+1( lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉 

4.Check for convergence: 
Compute log-likelihood of training data with Mi+1  
If the difference between new and old log-likelihood 
smaller than a threshold, stop. Else go to 2.
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The E-step
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Compute the expected count ⇥c(f, e|f , e)⇤:
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Phrase-based  
translation models

�8



CS447: Natural Language Processing (J. Hockenmaier)

Phrase-based translation models
Assumption:  fundamental units of translation are phrases: 
 
 
 

Phrase-based model of P(F | E):
1. Split target sentence deterministically into phrases ep1...epn 
2. Translate each target phrase epi  into source phrase fpi   

with translation probability φ(fpi |epi) 
3. Reorder foreign phrases with distortion probability  
d(ai-bi-1) = c|ai-bi-1 -1| 
ai   = start position of source phrase generated by ei  
bi-1 = end position of source phrase generated by ei-1
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President (in Cantonese):  Good morning, Honourable Members. 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Phrase-based models of P( f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch]  [is]  [at home]  [this week]  

Translate each target phrase epi into source phrase 
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability  P( fp |{ fpi }):  
  [Diese Woche]  [ist]  [die grüne Hexe]  [zuhause]  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P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})
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Translation probability P(fpi | epi)
Phrase translation probabilities can be obtained from 
a phrase table: 
 
 
 
 
 
 
 
 

This requires phrase alignment 
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EP FP count
green witch grüne Hexe …

at home zuhause 10534
at home daheim 9890

is ist 598012
this week diese Woche ….

CS447: Natural Language Processing (J. Hockenmaier)

Word alignment
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Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week
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 Phrase alignment
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Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week
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Obtaining phrase alignments
We’ll skip over details, but here’s the basic idea:  

For a given parallel corpus (F-E)
1. Train two word aligners, (F→E and E→F)
2. Take the intersection of these alignments  
    to get a high-precision word alignment
3. Grow these high-precision alignments  
    until all words in both sentences are included  
    in the alignment. 

Consider any pair of words in the union of the alignments, and 
incrementally add them to the existing alignments

4. Consider all phrases that are consistent with  
    this improved word alignment
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Decoding  
(for phrase-based MT)
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Phrase-based models of P( f | e)
Split target sentence e=e1..n into phrases ep1..epN: 
[The green witch]  [is]  [at home]  [this week]  

Translate each target phrase epi into source phrase 
fpi with translation probability P(fpi |epi): 
 [The green witch] = [die grüne Hexe], ... 

 Arrange the set of source phrases { fpi } to get s  
 with distortion probability  P( fp |{ fpi }):  
  [Diese Woche]  [ist]  [die grüne Hexe]  [zuhause]  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P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})
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Translating
How do we translate a foreign sentence (e.g. “Diese 
Woche ist die grüne Hexe zuhause” ) into English?
-We need to find  ê = argmaxe P(f | e)P(e)
-There is an exponential number of candidate 
translations e
-But we can look up phrase translations ep and  

P( fp | ep ) in the phrase table:  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diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 1.00.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6 green witch 0.7

is this week 0.4 the green witch 0.7

CS447: Natural Language Processing (J. Hockenmaier)

Generating a (random) translation
1. Pick the first Target phrase ep1 from the candidate list. 

                P :=  PLM(<s> ep1 )PTrans(fp1 | ep1 )
                E = the, F= <….die…>

2. Pick the next target phrase ep2 from the candidate list
                 P :=  P × PLM(ep2 | ep1)PTrans(fp2 | ep2 ) 
                 E = the green witch, F =  <….die grüne Hexe...>
3. Keep going: pick target phrases epi until the entire source 
sentence is translated
                  P :=  P × PLM(epi | ep1…i-1)PTrans(fpi | epi )
                 E = the green witch is, F = <….ist die grüne Hexe...> 
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diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 0.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6   green witch 0.7

is this week 0.4 the green witch 0.7

1

4 2

3 5
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Finding the best translation
How can we find the best translation efficiently? 

There is an exponential number of possible translations. 

We will use a heuristic search algorithm
We cannot guarantee to find the best (= highest-scoring) 
translation, but we’re likely to get close.

We will use a “stack-based” decoder
(If you’ve taken Intro to AI: this is A* (“A-star”) search)
We will score partial translations based on how good we 
expect the corresponding completed translation to be.
Or, rather: we will score partial translations on how bad we expect the 
corresponding complete translation to be.  
That is, our scores will be costs (high=bad, low=good)
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Scoring partial translations
Assign expected costs to partial translations (E, F):

expected_cost(E,F) = current_cost(E,F)  
                                   + future_cost(E,F)

The current cost is based on the score  
of the partial translation (E, F)
  e.g. current_cost(E,F) = logP(E)P(F | E)
The (estimated) future cost is a lower bound on the 
actual cost of completing the partial translation (E, F):

true_cost(E,F)  (= current_cost(E,F) + actual_future_cost(E,F))  
≥ expected_cost(E,F) (= current_cost(E,F) + est_future_cost(E,F))

because actual_future_cost(E,F) ≥ est_future_cost(E,F)
(The estimated future cost ignores the distortion cost)
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Stack-based decoding
Maintain a priority queue (=’stack’) of partial translations 
(hypotheses) with their expected costs.
Each element on the stack is open (we haven’t yet pursued this 
hypothesis) or closed (we have already pursued this hypothesis) 

At each step:
-Expand the best open hypothesis (the open translation with 
the lowest expected cost) in all possible ways. 
-These new translations become new open elements  
on the stack.
-Close the best open hypothesis. 

Additional Pruning (n-best / beam search):  
Only keep the n best open hypotheses around
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: current translation 
F: which words in F                  
F: have we covered?

CS447: Natural Language Processing (J. Hockenmaier)

E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

We’re done with this 
node now (all 
continuations have a 
lower cost)
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

Expand one of these 
new yellow nodes 
next
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E:
F: *******
Cost: 999

E: the at home
F: ***d*H*
Cost: 983

E: the
F: ***d***
Cost: 500

Expand the yellow 
node with the lowest 
cost
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

Expand the next node  
with the lowest cost
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E:
F: *******
Cost: 999

Stack-based decoding
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E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560
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E:
F: *******
Cost: 999

Stack-based decoding
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Cost: 852

E: the
F: ***d***
Cost: 500

Cost: 993

...

...

Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

Cost: 983

 
Cost: 999

Cost: 500 Cost: 560

Cost: 
732

Cost: 
705

Cost: 
800

We always expand the 
best (lowest-cost) 

node, even if it’s not the 
last one introduced
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MT evaluation 
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Evaluate candidate translations against several reference 
translations. 

C1: It is a guide to action which ensures that the military always obeys the commands  
of the party. 
C2: It is to insure the troops forever hearing the activity guidebook that party direct

R1: It is a guide to action that ensures that the military will forever heed Party commands.
R2: It is the guiding principle which guarantees the military forces always being under the 
command of the Party.
R3: It is the practical guide for the army always to heed the directions of the party.

The BLEU score is based on N-gram precision:
How many n-grams in the candidate translation occur also in 
one of the reference translation? 
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Automatic evaluation: BLEU
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BLEU details
For n ∈ {1,…,4}, compute the (modified) precision of all n-grams: 
 
 

MaxFreqref(‘the party’) = max. count of ‘the party’ in one reference 
translation. 
Freqc(‘the party’) =  count of ‘the party’ in candidate translation c.

Penalize short candidate translations by a brevity penalty BP
c = length (number of words) of the whole candidate translation corpus
r = Pick for each candidate the reference translation that is closest in length; 
     sum up these lengths. 

 
Brevity penalty BP = exp(1-c/r) for c ≤ r; BP = 1 for c>r   
(BP ranges from e for c=0 to 1 for c=r)
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Precn =

P
c2C

P
n-gram2c MaxFreqref(n-gram)

P
c2C

P
-gram2c Freqc(n-gram)
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BLEU score
The BLEU score is the geometric mean of the precision of the 
unigrams, bigrams, trigrams, quadrigrams,  
weighted by the brevity penalty BP.

�32

BLEU = BP⇥ exp

 
1

N

NX

n=1

log Precn

!
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Human evaluation
We want to know whether the translation is “good” English, 
and whether it is an accurate translation of the original.

-Ask human raters to judge the fluency and the adequacy  
of the translation (e.g. on a scale of 1 to 5)
-Correlated with fluency is accuracy on cloze task:

Give rater the sentence with one word replaced by blank. 
Ask rater to guess the missing word in the blank.
-Similar to adequacy is informativeness  
Can you use the translation to perform some task  
(e.g. answer multiple-choice questions about the text)

�33 CS498JH: Introduction to NLP 

Summary:
Machine Translation
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Machine translation models
Current MT models all rely on statistics.
 
Many current models do estimate P(E | F) directly,  
but may use features based on language models 
(capturing P(E)) and IBM-style translation models 
(P(F | E)) internally.

There are a number of syntax-based models,  
e.g. using synchronous context-free grammars, which 
consist of pairs of rules for the two languages in which 
each RHS NT in language A corresponds to a RHS 
NT in language B:

  Language A: XP → YP ZP   Language B: XP → ZP YP
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More recent developments
Neural network-based approaches:

Recurrent neural networks (RNN) can model sequences  
(e.g. strings, sentences, etc.)
Use one RNN (the encoder) to process  
the input in the source language
Pass its output to another RNN (the decoder)  
to generate  the output in the target language
 
See e.g. http://www.tensorflow.org/tutorials/seq2seq/
index.md#sequence-to-sequence_basics
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