CS447: Natural Language Processing http://courses.engr.illinois.edu/cs447 ## Lecture 23: Phrase-based MT (corrected) Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center # Recap: IBM models for MT CS447: Natural Language Processing (J. Hockenmaier) 9 #### The IBM models Use the noisy channel (Bayes rule) to get the best (most likely) target translation e for source sentence f: $$rg \max_{\mathbf{e}} P(\mathbf{e}|\mathbf{f}) = rg \max_{\mathbf{e}} P(\mathbf{f}|\mathbf{e})P(\mathbf{e})$$ noisy channel The translation model $P(\mathbf{f} \mid \mathbf{e})$ requires alignments a $$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a} \in \mathcal{A}(\mathbf{e},\mathbf{f})} P(\mathbf{f},\mathbf{a}|\mathbf{e})$$ marginalize (=sum) over all alignments a Generate f and the alignment a with $P(f, a \mid e)$: $$P(\mathbf{f}, \mathbf{a} | \mathbf{e}) = \underbrace{P(m | \mathbf{e})}_{\text{Length: } |\mathbf{f}| = m} \underbrace{\prod_{j=1}^{m} P(a_j | a_{1..j-1}, f_{1..j-1}, m, \mathbf{e})}_{\text{Word alignment } a_j} \underbrace{P(f_j | a_{1..j} f_{1..j-1}, \mathbf{e}, m)}_{\text{Translation } f_j}$$ $$\mathbf{m} = \# \text{words} \quad \text{probability of} \quad \text{probability}$$ $$\text{CS447 Natural Language Processing} \quad \text{alignment } \mathbf{a}_j \quad \text{of word } \mathbf{f}_j$$ ## Representing word alignments | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |---|--------|-------|---|----------|----|-----|---|----|------| | | | Marie | а | traversé | le | lac | à | la | nage | | 0 | NULL | | | | | | | | | | 1 | Mary | | | | | | | | | | 2 | swam | | | | | | | | | | 3 | across | | | | | | | | | | 4 | the | | | | | | | | | | 5 | lake | | | | | | | | | | | | | • | | | | | | | | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----------|-------|---|----------|----|-----|---|----|------| | Foreign | Marie | а | traversé | le | lac | à | la | nage | | Alignment | 1 | 3 | 3 | 4 | 5 | 0 | 0 | 2 | Every source word f[i] is aligned to one target word e[j] (incl. NULL). We represent alignments as a vector a (of the same length as the source) with a[i] = j CS447 Natural Language Processing #### IBM model 1: Generative process For each target sentence $e = e_1..e_n$ of length n: | 0 | 1 | 2 | 3 | 4 | 5 | |------|------|------|--------|-----|------| | NULL | Mary | swam | across | the | lake | 1. **Choose a length** m for the source sentence (e.g m = 8) | 0000 | <u></u> | | 00 | | | .00 (0. | 9 | ٠, | |----------|---------|---|----|---|---|---------|---|----| | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 2. Choose an alignment $\mathbf{a} = a_1...a_{\rm m}$ for the source sentence Each a_i corresponds to a word e_i in $e: 0 \le a_i \le n$ | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-----------|---|---|---|---|---|---|---|---| | Alignment | 1 | 3 | 3 | 4 | 5 | 0 | 0 | 2 | 3. Translate each target word e_{ai} into the source language | | | | | | | | | <u> </u> | |-------------|-------|---|----------|----|-----|---|----|----------| | Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | Alignment | 1 | 3 | 3 | 4 | 5 | 0 | 0 | 2 | | Translation | Marie | а | traversé | le | lac | à | la | nage | CS447 Natural Language Processing 5 ## **Expectation-Maximization (EM)** 1. Initialize a first model, Mo #### 2. Expectation (E) step: Go through training data to gather expected counts $\langle count(lac, lake) \rangle$ #### 3. Maximization (M) step: Use expected counts to compute a new model M_{i+1} $P_{i+1}(lac | lake) = \langle count(lac, lake) \rangle / \langle \sum_{w} count(w, lake) \rangle$ #### 4. Check for convergence: Compute log-likelihood of training data with M_{i+1} If the difference between new and old log-likelihood smaller than a threshold, stop. Else go to 2. CS447 Natural Language Processing 6 ## The E-step Compute the expected count $\langle c(f,e|\mathbf{f},\mathbf{e})\rangle$: $$\langle c(f, e | \mathbf{f}, \mathbf{e}) \rangle = \sum_{\mathbf{a} \in \mathcal{A}(\mathbf{f}, \mathbf{e})} P(\mathbf{a} | \mathbf{f}, \mathbf{e}) \cdot \underbrace{c(f, e | \mathbf{a}, \mathbf{e}, \mathbf{f})}_{\text{How often are } f, e \text{ aligned in } \mathbf{a}?}$$ $$P(\mathbf{a} | \mathbf{f}, \mathbf{e}) = \frac{P(\mathbf{a}, \mathbf{f} | \mathbf{e})}{P(\mathbf{f} | \mathbf{e})} = \frac{P(\mathbf{a}, \mathbf{f} | \mathbf{e})}{\sum_{\mathbf{a}'} P(\mathbf{a}', \mathbf{f} | \mathbf{e})}$$ $$P(\mathbf{a}, \mathbf{f} | \mathbf{e}) = \prod_{j} P(f_{j} | e_{a_{j}})$$ $$\langle c(f, e | \mathbf{f}, \mathbf{e}) \rangle = \sum_{\mathbf{a} \in \mathcal{A}(\mathbf{f}, \mathbf{e})} \frac{\prod_{j} P(f_{j} | e_{a_{j}})}{\sum_{a'} \prod_{j} P(f_{j} | e_{a_{j}})} c(f, e | \mathbf{a}, \mathbf{e}, \mathbf{f})$$ Phrase-based translation models CS447 Natural Language Processing 7 CS447: Natural Language Processing (J. Hockenmaier) #### Phrase-based translation models Assumption: fundamental units of translation are phrases: #### Phrase-based model of $P(F \mid E)$: - 1. Split target sentence deterministically into phrases $ep_1...ep_n$ - 2. Translate each target phrase ep_i into source phrase fp_i with translation probability $\varphi(fp_i | ep_i)$ - 3. Reorder foreign phrases with distortion probability $d(a_i-b_{i-1}) = c^{|a_i-b_{i-1}|}$ a_i = start position of source phrase generated by e_i b_{i-1} = end position of source phrase generated by e_{i-1} CS447: Natural Language Processing (J. Hockenmaier) 9 11 ## Translation probability $P(fp_i | ep_i)$ Phrase translation probabilities can be obtained from a **phrase table**: | EP | FP | count | |-------------|-------------|--------| | green witch | grüne Hexe | | | at home | zuhause | 10534 | | at home | daheim | 9890 | | is | ist | 598012 | | this week | diese Woche | | This requires phrase alignment ## Phrase-based models of $P(f \mid e)$ **Split target sentence** $e=e_{1..n}$ into phrases $ep_1..ep_N$: [The green witch] [is] [at home] [this week] **Translate each target phrase** $e\mathbf{p}_i$ into source phrase $f\mathbf{p}_i$ with translation probability $P(fp_i|ep_i)$: [The green witch] = [die grüne Hexe], ... Arrange the set of source phrases $\{fp_i\}$ to get s with distortion probability $P(fp | \{fp_i\})$: [Diese Woche] [ist] [die grüne Hexe] [zuhause] $$P(\mathbf{f}|\mathbf{e} = \langle ep_1, ..., ep_l) = \prod_i P(fp_i|ep_i)P(\mathbf{fp}|\{fp_i\})$$ CS447: Natural Language Processing (J. Hockenmaier) 10 ### Word alignment | | Diese | Woche | ist | die | grüne | Hexe | zuhause | |-------|-------|-------|-----|-----|-------|------|---------| | The | | | | | | | | | green | | | | | | | | | witch | | | | | | | | | is | | | | | | | | | at | | | | | | | | | home | | | | | | | | | this | | | | | | | | | week | | | | | | | | ## Phrase alignment | | Diese | Woche | ist | die | grüne | Hexe | zuhause | |-------|-------|-------|-----|-----|-------|------|---------| | The | | | | | | | | | green | | | | | | | | | witch | | | | | | | | | is | | | | | | | | | at | | | | | | | | | home | | | | | | | | | this | | | | | | | | | week | | | | | | | | CS447: Natural Language Processing (J. Hockenmaier) 13 ## Obtaining phrase alignments We'll skip over details, but here's the basic idea: For a given parallel corpus (F-E) - 1. Train **two word aligners**, $(F \rightarrow E \text{ and } E \rightarrow F)$ - 2. Take the **intersection** of these alignments to get a **high-precision** word alignment - Grow these high-precision alignments until all words in both sentences are included in the alignment. Consider any pair of words in the **union** of the alignments, and incrementally add them to the existing alignments 4. Consider all phrases that are **consistent** with this improved word alignment CS447: Natural Language Processing (J. Hockenmaier) 14 ## Phrase-based models of $P(f \mid e)$ **Split target sentence** $e=e_{1..n}$ into phrases $ep_1..ep_N$: [The green witch] [is] [at home] [this week] **Translate each target phrase** $e\mathbf{p}_i$ into source phrase $f\mathbf{p}_i$ with translation probability $P(fp_i|ep_i)$: [The green witch] = [die grüne Hexe], ... Arrange the set of source phrases $\{fp_i\}$ to get s with distortion probability $P(fp | \{fp_i\})$: [Diese Woche] [ist] [die grüne Hexe] [zuhause] $$P(\mathbf{f}|\mathbf{e} = \langle ep_1, ..., ep_l) = \prod_i P(fp_i|ep_i)P(\mathbf{fp}|\{fp_i\})$$ CS447: Natural Language Processing (J. Hockenmaier) 16 # Decoding (for phrase-based MT) ### **Translating** How do we translate a foreign sentence (e.g. "Diese Woche ist die grüne Hexe zuhause") into English? - -We need to find $\hat{e} = argmaxe P(f \mid e)P(e)$ - -There is an exponential number of candidate translations e - But we can look up phrase translations ep and $P(fp \mid ep)$ in the phrase table: | diese | Woche | ist die | | grüne | Hexe | zuhause | |---------------|-------------|-----------------|--------|-----------------|---------------|-----------| | this 0.2 | week 0.7 | week 0.7 is 0.8 | | green 0.3 | witch 0.5 | home 1.00 | | these 0.5 | | | the gr | een 0.4 | sorceress 0.6 | | | this week 0.6 | | | | green witch 0.7 | | | | is t | his week 0. | 4 | th | | | | CS447: Natural Language Processing (J. Hockenmaier) 17 19 ## Finding the best translation How can we find the best translation efficiently? There is an exponential number of possible translations. We will use a *heuristic* search algorithm We cannot guarantee to find the best (= highest-scoring) translation, but we're likely to get close. We will use a "stack-based" decoder (If you've taken Intro to AI: this is A* ("A-star") search) We will score partial translations based on how good we expect the corresponding completed translation to be. Or, rather: we will score partial translations on how **bad** we expect the corresponding complete translation to be. That is, our scores will be costs (high=bad, low=good) ## Generating a (random) translation 1. Pick the first Target phrase ep_1 from the candidate list. $$P := P_{LM}(\langle s \rangle ep_1)P_{Trans}(fp_1 \mid ep_1)$$ $E = the, F = \langledie... \rangle$ 2. Pick the next target phrase ep_2 from the candidate list $$P := P \times P_{LM}(ep_2 \mid ep_1)P_{Trans}(fp_2 \mid ep_2)$$ $E = the green witch, F = <...die grüne Hexe...>$ 3. Keep going: pick target phrases ep_i until the entire source sentence is translated $$P := P \times P_{LM}(\boldsymbol{e}\boldsymbol{p}_{i} | \boldsymbol{e}\boldsymbol{p}_{1...i-1}) P_{Trans}(\boldsymbol{f}\boldsymbol{p}_{i} | \boldsymbol{e}\boldsymbol{p}_{i})$$ E = the green witch is, F = <....ist die grüne Hexe...> | diese | Woche | ist | die | grüne | Hexe | zuhause | | | |-------------|-------------------|----------------|---------|---------------------|---------------|---------------|--|--| | this 0.2 | week 0.7 | $(3)_{is 0.8}$ | the 0.3 | green 0.3 | witch 0.5 | 5 at home 0.5 | | | | these 0.5 | | | the gre | en 0.4 | sorceress 0.6 | | | | | (4) this we | (4) this week 0.6 | | | (2) green witch 0.7 | | | | | | | is this week 0.4 | | t | | | | | | CS447: Natural Language Processing (J. Hockenmaier) 18 ## Scoring partial translations Assign expected costs to partial translations (E, F): $$expected_cost(E,F) = current_cost(E,F) + future \ cost(E,F)$$ The current cost is based on the score of the partial translation (E, F) e.g. $$current_cost(E,F) = log P(E)P(F \mid E)$$ The (estimated) future cost is a **lower** bound on the actual cost of completing the partial translation (E, F): $$true_cost(E,F)$$ (= $current_cost(E,F)$ + $actual_future_cost(E,F)$) $\geq expected_cost(E,F)$ (= $current_cost(E,F)$ + $est_future_cost(E,F)$) because $actual_future_cost(E,F)$ $\geq est_future_cost(E,F)$ (The estimated future cost ignores the distortion cost) CS447: Natural Language Processing (J. Hockenmaier) ## Stack-based decoding Maintain a **priority queue** (='stack') of **partial translations** (hypotheses) with their **expected costs**. Each element on the stack is **open** (we haven't yet pursued this hypothesis) or **closed** (we have already pursued this hypothesis) #### At each step: - **-Expand** the best open hypothesis (the open translation with the lowest expected cost) in all possible ways. - These new translations become new open elements on the stack. - **-Close** the best open hypothesis. **Additional Pruning** (*n*-best / beam search): Only keep the *n* best open hypotheses around CS447: Natural Language Processing (J. Hockenmaier) 21 #### Stack-based decoding CS447: Natural Language Processing (J. Hockenmaier) 22 ## Stack-based decoding #### 23 ## Stack-based decoding CS447: Natural Language Processing (J. Hockenmaier) #### Stack-based decoding E: these F: d***** E: the witch Cost: 852 F: ***d*H* Cost: 700 E: the E: the green witch F. ***d*** F: ***daH* F: ***** Cost: 500 Cost: 560 Cost: 999 E: at home F• ***** Cost: 993 E: the at home Expand the yellow F: ***d*H* node with the lowest Cost: 983 cost 25 CS447: Natural Language Processing (J. Hockenmaier) ## MT evaluation CS447: Natural Language Processing (J. Hockenmaier) 29 31 #### Automatic evaluation: BLEU Evaluate candidate translations against several reference translations. C1: It is a guide to action which ensures that the military always obeys the commands of the party. C2: It is to insure the troops forever hearing the activity guidebook that party direct R1: It is a guide to action that ensures that the military will forever heed Party commands. R2: It is the guiding principle which guarantees the military forces always being under the command of the Party. R3: It is the practical guide for the army always to heed the directions of the party. #### The **BLEU score** is based on **N-gram precision**: How many n-grams in the candidate translation occur also in one of the reference translation? CS447: Natural Language Processing (J. Hockenmaier) 30 #### **BLEU** details For $n \in \{1,...,4\}$, compute the (modified) precision of all *n*-grams: $$Prec_n = \frac{\sum_{c \in C} \sum_{n \text{-gram} \in c} \text{MaxFreq}_{\text{ref}}(n \text{-gram})}{\sum_{c \in C} \sum_{\text{-gram} \in c} \text{Freq}_{\text{c}}(n \text{-gram})}$$ $MaxFreq_{ref}('the\ party') = max.$ count of 'the party' in **one** reference translation. $Freq_c('the party') = count of 'the party' in candidate translation c.$ #### Penalize short candidate translations by a brevity penalty BP c = length (number of words) of the whole candidate translation corpus r= Pick for each candidate the reference translation that is closest in length; sum up these lengths. Brevity penalty $BP = \exp(1-c/r)$ for $c \le r$; BP = 1 for c > r (BP ranges from e for c = 0 to 1 for c = r) #### **BLEU** score The BLEU score is the geometric mean of the precision of the unigrams, bigrams, trigrams, quadrigrams, weighted by the brevity penalty BP. $$\mathbf{BLEU} = BP \times \exp\left(\frac{1}{N} \sum_{n=1}^{N} \log Prec_n\right)$$ CS447: Natural Language Processing (J. Hockenmaier) CS447: Natural Language Processing (J. Hockenmaier) #### **Human** evaluation We want to know whether the translation is "good" English, and whether it is an accurate translation of the original. - Ask human raters to judge the **fluency** and the **adequacy** of the translation (e.g. on a scale of 1 to 5) - Correlated with fluency is accuracy on cloze task: Give rater the sentence with one word replaced by blank. Ask rater to guess the missing word in the blank. - Similar to adequacy is **informativeness**Can you use the translation to perform some task (e.g. answer multiple-choice questions about the text) CS447: Natural Language Processing (J. Hockenmaier) 33 ## Summary: Machine Translation CS498JH: Introduction to NLP #### 34 #### Machine translation models Current MT models all rely on statistics. Many current models do estimate $P(E \mid F)$ directly, but may use features based on language models (capturing P(E)) and IBM-style translation models $(P(F \mid E))$ internally. There are a number of syntax-based models, e.g. using synchronous context-free grammars, which consist of pairs of rules for the two languages in which each RHS NT in language A corresponds to a RHS NT in language B: Language A: XP → YP ZP Language B: XP → ZP YP ## More recent developments Neural network-based approaches: Recurrent neural networks (RNN) can model sequences (e.g. strings, sentences, etc.) Use one RNN (the encoder) to process the input in the source language Pass its output to another RNN (the decoder) to generate the output in the target language See e.g. http://www.tensorflow.org/tutorials/seq2seq/ index.md#sequence-to-sequence basics 35 CS447: Natural Language Processing (J. Hockenmaier)