CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Lecture 17:

Vector-space semantics (distributional similarities)

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center

Where we're at

We have looked at how to obtain the meaning of sentences from the meaning of their words (represented in predicate logic).

Now we will look at how to represent the meaning of words (although this won't be in predicate logic)

We will consider different tasks:

- Computing the semantic similarity of words by representing them in a vector space
-Finding groups of similar words by inducing word clusters
- Identifying different meanings of words by word sense disambiguation

Using PMI to identify words that "go together"

Discrete random variables

A discrete random variable X can take on values
$\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ with probability $\mathrm{p}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$

A note on notation:

$\mathrm{p}(\mathrm{X})$ refers to the distribution, while $\mathrm{p}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$ refers to the probability of a specific value $\mathrm{x}_{\mathrm{i}} . \mathrm{p}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$ also written as $\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$

In language modeling, the random variables correspond to words W or to sequences of words $\mathrm{W}^{(1)}$... $\mathrm{W}^{(\mathrm{n})}$.

Another note on notation:

We're often sloppy in making the distinction between
the i-th word [token] in a sequence/string, and the i-th word [type] in the vocabulary clear.

Pointwise mutual information (PMI)

Recall that two events x, y are independent if their joint probability is equal to the product of their individual probabilities:
x, y are independent iff $p(x, y)=p(x) p(y)$
x, y are independent iff $p(x, y) / p(x) p(y)=1$
In NLP, we often use the pointwise mutual information (PMI) of two outcomes/events (e.g. words):

$$
P M I(x, y)=\log \frac{p(X=x, Y=y)}{p(X=x) p(Y=y)}
$$

Mutual information $I(X ; Y)$

Two random variables X, Y are independent

 iff their joint distribution is equal to the product of their individual distributions:$$
p(X, Y)=p(X) p(Y)
$$

That is, for all outcomes x, y :

$$
p(X=x, Y=x)=p(X=x) p(Y=y)
$$

$I(X ; Y)$, the mutual information of two random variables X and Y is defined as

$$
I(X ; Y)=\sum_{X, Y} p(X=x, Y=y) \log \frac{p(X=x, Y=y)}{p(X=x) p(Y=y)}
$$

Using PMI to find related words

Find pairs of words w_{i}, w_{j} that have high pointwise mutual information:

$$
\operatorname{PMI}\left(w_{i}, w_{j}\right)=\log \frac{p\left(w_{i}, w_{j}\right)}{p\left(w_{i}\right) p\left(w_{j}\right)}
$$

Different ways of defining $p\left(w_{i}, w_{j}\right)$ give different answers.

Using PMI to find "sticky pairs"

```
p(wi,ww): probability that wi, w
    Define p(wi,wj) = p("wiwj")
```

High PMI word pairs under this definition: Humpty Dumpty, Klux Klan, Ku Klux, Tse Tung, avant garde, gizzard shad, Bobby Orr, mutatis mutandis, Taj Mahal, Pontius Pilate, ammonium nitrate, jiggery pokery, anciens combattants, fuddle duddle, helter skelter, mumbo jumbo (and a few more)

Back to lexical semantics

Vector representations of words

"Traditional" distributional similarity approaches represent words as sparse vectors [today's lecture]
-Each dimension represents one specific context

- Vector entries are based on word-context co-occurrence statistics (counts or PMI values)

Alternative, dense vector representations:
-We can use Singular Value Decomposition to turn these sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use neural models to explicitly learn a dense vector representation (embedding) (word2vec, Glove, etc.)

Sparse vectors = most entries are zero
Dense vectors = most entries are non-zero

Distributional Similarities

Measure the semantic similarity of words in terms of the similarity of the contexts in which the words appear

Represent words as vectors

Why do we care about word similarity?

Question answering:
Q: "How tall is Mt. Everest?"
Candidate A: "The official height of Mount Everest is 29029 feet"
"tall" is similar to "height"

Why do we care about word contexts?

What is tezgüino?

A bottle of tezgüino is on the table.
Everybody likes tezgüino.
Tezgüino makes you drunk.
We make tezgüino out of corn.
(Lin, 1998; Nida, 1975)

The contexts in which a word appears tells us a lot about what it means.

The Distributional Hypothesis

Zellig Harris (1954):
"oculist and eye-doctor ... occur in almost the same environments"
"If A and B have almost identical environments we say that they are synonyms."

John R. Firth 1957:
You shall know a word by the company it keeps.
The contexts in which a word appears
tells us a lot about what it means.
Words that appear in similar contexts have similar meanings

Distributional similarities

Distributional similarities use the set of contexts in which words appear to measure their similarity.

They represent each word w as a vector w

$$
\mathbf{w}=\left(w_{1}, \ldots, w_{N}\right) \in \mathbf{R}^{\mathrm{N}}
$$

in an N -dimensional vector space.
-Each dimension corresponds to a particular context c_{n}
-Each element w_{n} of w captures the degree to which the word w is associated with the context c_{n}.

- w_{n} depends on the co-occurrence counts of w and c_{n}

The similarity of words w and u is given by the similarity of their vectors \mathbf{w} and \mathbf{u}

Documents as contexts

Let's assume our corpus consists of a (large) number of documents (articles, plays, novels, etc.)

In that case, we can define the contexts of a word as the sets of documents in which it appears.

Conversely, we can represent each document as the (multi)set of words which appear in it.

- Intuition: Documents are similar to each other if they contain the same words.
-This is useful for information retrieval, e.g. to compute the similarity between a query (also a document) and any document in the collection to be searched.

Term-Document Matrix

| | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :--- | ---: | ---: | ---: | ---: | ---: |
| battle | 1 | 1 | 8 | 15 |
| soldier | 2 | 2 | 12 | 36 |
| fool | 37 | 58 | 1 | 5 |
| clown | 6 | 117 | 0 | 0 |

Two documents are similar if their vectors are similar Two words are similar if their vectors are similar

Term-Document Matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

A Term-Document Matrix is a 2D table:
-Each cell contains the frequency (count) of the term (word) t
in document d : $\mathrm{tf}_{\mathrm{t}, \mathrm{d}}$
-Each column is a vector of counts over words, representing a document
-Each row is a vector of counts over documents, representing a word

What is a 'context'?

There are many different definitions of context that yield different kinds of similarities:

Contexts defined by nearby words:
How often does w appear near the word drink? Near = "drink appears within a window of $\pm \mathrm{k}$ words of w ", or "drink appears in the same document/sentence as w" This yields fairly broad thematic similarities.

Contexts defined by grammatical relations:
How often is (the noun) w used as the subject (object) of the verb drink? (Requires a parser).
This gives more fine-grained similarities.

Using nearby words as contexts

- Decide on a fixed vocabulary of N context words $\mathrm{C}_{1} . . \mathrm{C}_{\mathrm{N}}$ Context words should occur frequently enough in your corpus that you get reliable co-occurrence counts, but you should ignore words that are too common ('stop words': a, the, on, in, and, or, is, have, etc.)
-Define what 'nearby' means
For example: w appears near c if c appears within ± 5 words of w
- Get co-occurrence counts of words w and contexts c
-Define how to transform co-occurrence counts of words w and contexts c into vector elements w_{n} For example: compute (positive) PMI of words and contexts
-Define how to compute the similarity of word vectors For example: use the cosine of their angles.

Getting co-occurrence counts

Co-occurrence as a binary feature:

Does word w ever appear in the context c? $(1=y e s / 0=n o)$

| | arts | boil | data | function | large | sugar | water |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| apricot | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| pineapple | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| digital | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| information | 0 | 0 | 1 | 1 | 1 | 0 | 0 |

Co-occurrence as a frequency count:

How often does word w appear in the context c? (0...n times)

	arts	boil	data	function	large	sugar	water
apricot	0	1	0	0	5	2	7
pineapple	0	2	0	0	10	8	5
digital	0	0	31	8	20	0	0
information	0	0	35	23	5	0	0

Typically: 10K-100K dimensions (contexts), very sparse vectors
CS447: Natural Language Processing (J. Hockenmaier)

Defining and counting co-occurrence

Defining co-occurrences:

- Within a fixed window: v_{i} occurs within $\pm n$ words of w
-Within the same sentence: requires sentence boundaries
-By grammatical relations:
v_{i} occurs as a subject/object/modifier/... of verb w (requires parsing - and separate features for each relation)

Counting co-occurrences:

- f_{i} as binary features (1,0): w does/does not occur with v_{i}
$-f_{i}$ as frequencies: w occurs n times with v_{i}
- f_{i} as probabilities:
e.g. f_{i} is the probability that v_{i} is the subject of w.

Counts vs PMI

Sometimes, low co-occurrences counts are very informative, and high co-occurrence counts are not:
-Any word is going to have relatively high co-occurrence counts with very common contexts (e.g. "it", "anything", "is", etc.), but this won't tell us much about what that word means.
-We need to identify when co-occurrence counts are more likely than we would expect by chance.

We therefore want to use PMI values instead of raw frequency counts:

$$
\begin{aligned}
& \text { counts: } \\
& \operatorname{PMI}(w, c)=\log \frac{p(w, c)}{p(w) p(c)}
\end{aligned}
$$

But this requires us to define $p(\mathrm{w}, \mathrm{c}), p(\mathrm{w})$ and $p(\mathrm{c})$

Word-Word Matrix

Context: ± 7 words

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital computer ll suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

Resulting word-word matrix:

$f(w, c)=$ how often does word w appear in context c :
"information" appeared six times in the context of "data"

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	1	0	1
pineapple	0	0	0	1	0	1
digital	0	2	1	0	1	0
information	0	1	6	0	4	0

Computing PMI of w and c :

 Using a fixed window of $\pm \mathrm{k}$ words$$
\operatorname{PMI}(w, c)=\log \frac{p(w, c)}{p(w) p(c)}
$$

$N:$
$f(w) \leq N:$
How many tokens does the corpus contain?
How often does w occur?
$f(w, c) \leq f(w)$: How often does w occur with c in its window? $f(\mathrm{c})=\sum_{w} f(w, c) \leq N$: How many tokens have c in their window?
$p(w)=f(w) / N$
$p(\mathrm{c})=f(c) / N$
$p(w, c)=f(w, c) / N$

$p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}$	Count(w,context)						
	apricot	computer d		data pinch result			sugar
			0	0	1	0	1
	pineapple			0	1	0	1
	digital		2	1	0	1	0
$p\left(w_{i}\right)=\sum_{j=1}^{c} f_{i j}$	information		1	6	0	4	0
	$p(w=\text { information, } c=\text { data })=6 / 19=.32$						
$p\left(w_{i}\right)=\frac{}{N}$	$\mathrm{p}(\mathrm{w}=$ information $)=11 / 19=.58$						
$\stackrel{W}{f}$	$p(\mathrm{c}=$ data $)=7 / 19=.37$						
	p(w,context)						p(w)
		computer	data	pinch	result	sugar	
	apricot	0.00	0.00	0.05	0.00	0.05	0.11
	pineapple	0.00	0.00	0.05	0.00	0.05	0.11
	digital	0.11	0.05	0.00	0.05	0.00	0.21
	information	0.05	0.32	0.00	0.21	0.00	0.58
	p(context)	0.16	0.37	0.11	0.26	0.11	

CS447: Natural Language Processing (J. Hockenmaier)

Computing PMI of w and c : w and c in the same sentence

$$
P M I(w, c)=\log \frac{p(w, c)}{p(w) p(c)}
$$

$N:$
$f(w) \leq N:$
$f(w, c) \leq f(w):$
$f(\mathrm{c}) \leq N$:
$p(w)=f(w) / N$
$p(c)=f(c) / N$
$p(w, c)=f(w, c) / N$

Using grammatical features

Observation: verbs have 'selectional preferences':
E.g. "eat" takes edible things as objects and animate entities as subjects.
Exceptions: metonymy ("The VW honked at me")
and metaphors: "Skype ate my credit"

This allows us to induce noun classes:
Edible things occur as objects of "eat".
In general, nouns that occur as subjects/objects of specific verbs tend to be similar.

This also allows us to induce verb classes:
Verbs that take the same class of nouns as arguments tend to be similar/related.

Measuring association with context

-Every element f_{i} of the co-occurrence vector corresponds to some word w^{\prime} (and possibly a relation r):
e.g. (r,w')= (obj-of, attack)
-The value of f_{i} should indicate the association strength between (r, w^{\prime}) and w.
-What value should feature f_{i} for word w have?
Probability $P\left(f_{i} \mid w\right)$: f_{i} will be high for any frequent feature (regardless of w)

Example: frequencies of grammatical relations
64M word corpus, parsed with Minipar (Lin, 1998)

	cell
sbj of absorb	1
sbj of adapt	1
sbj of behave	1
\ldots	\ldots
mod of abnormality	3
mod of anemia	8
\ldots	
obj of attack	6
obj of call	11
\ldots	

Frequencies vs. PMI

Objects of 'drink' (Lin, 1998)

	Count	PMI
bunch beer	2	12.34
tea	2	11.75
liquid	2	10.53
champagne	4	11.75
anything	3	5.15
it	3	1.25

Positive Pointwise Mutual Information

PMI is negative when words co-occur less than expected by chance.
This is unreliable without huge corpora:
With $\mathrm{P}\left(\mathrm{w}_{1}\right) \approx \mathrm{P}\left(\mathrm{w}_{2}\right) \approx 10^{-6}$, we can't estimate whether $\mathrm{P}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)$ is significantly different from 10^{-12}

We often just use positive PMI values, and replace all PMI values <0 with 0 :

Positive Pointwise Mutual Information (PPMI):

$$
\begin{aligned}
\operatorname{PPMI}(w, c) & =\operatorname{PMI}(w, c) & \text { if } \operatorname{PMI}(w, c)>0 \\
& =0 & \text { if } \operatorname{PMI}(w, c) \leq 0
\end{aligned}
$$

Vector similarity

In distributional models, every word is a point in n-dimensional space.
How do we measure the similarity between two points/vectors?

In general:

-Manhattan distance (Levenshtein distance, L1 norm)

$$
\operatorname{dist}_{L 1}(\vec{x}, \vec{y})=\sum_{i=1}^{N}\left|x_{i}-y_{i}\right|
$$

-Euclidian distance (L2 norm)

$$
\operatorname{dist}_{L 2}(\vec{x}, \vec{y})=\sqrt{\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)^{2}}
$$

PMI and smoothing

PMI is biased towards infrequent events:

If $P(\mathrm{w}, \mathrm{c})=P(\mathrm{w})=P(\mathrm{c})$, then $\operatorname{PMI}(\mathrm{w}, \mathrm{c})=\log (1 / P(\mathrm{w}))$
So PMI(w, c) is larger for rare words w with low $P(\mathrm{w})$.
Simple remedy: Add-k smoothing of $P(\mathrm{w}, \mathrm{c}), P(\mathrm{w}), P(\mathrm{c})$ pushes all PMI values towards zero.
Add-k smoothing affects low-probability events more, and will therefore reduce the bias of PMI towards infrequent events.
(Pantel \& Turney 2010)

Dot product as similarity

If the vectors consist of simple binary features $(0,1)$, we can use the dot product as similarity metric:

$$
\operatorname{sim}_{\text {dot-prod }}(\vec{x}, \vec{y})=\sum_{i=1}^{N} x_{i} \times y_{i}
$$

The dot product is a bad metric if the vector elements are arbitrary features: it prefers long vectors

- If one x_{i} is very large (and y_{i} nonzero), $\operatorname{sim}(\boldsymbol{x}, \boldsymbol{y})$ gets very large

If the number of nonzero x_{i} and y_{i} s is very large, $\operatorname{sim}(\boldsymbol{x}, \boldsymbol{y})$ gets very large.

- Both can happen with frequent words.

$$
\text { length of } \vec{x}:|\vec{x}|=\sqrt{\sum_{i=1}^{N} x_{i}^{2}}
$$

Vector similarity: Cosine

One way to define the similarity of two vectors is to use the cosine of their angle.

The cosine of two vectors is their dot product, divided by the product of their lengths:

$$
\operatorname{sim}_{\cos }(\vec{x}, \vec{y})=\frac{\sum_{i=1}^{N} x_{i} \times y_{i}}{\sqrt{\sum_{i=1}^{N} x_{i}^{2}} \sqrt{\sum_{i=1}^{N} y_{i}^{2}}}=\frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}
$$

$\operatorname{sim}(\mathbf{w}, \mathbf{u})=1: \mathbf{w}$ and \mathbf{u} point in the same direction $\operatorname{sim}(\mathbf{w}, \mathbf{u})=0: \mathbf{w}$ and \mathbf{u} are orthogonal $\operatorname{sim}(\mathbf{w}, \mathbf{u})=-1: \mathbf{w}$ and \mathbf{u} point in the opposite direction

Jensen/Shannon divergence

Instead, we use the Jensen/Shannon divergence: the distance of each distribution from their average.

- Average of P and $Q: \quad \operatorname{Avg}_{P, Q}(x)=\frac{P(x)+Q(x)}{2}$
-Jensen/Shannon divergence of P and Q :

$$
J S(P \| Q)=D\left(P \| A v g_{P, Q}\right)+D\left(Q \| A v g_{P, Q}\right)
$$

-As a distance measure between \mathbf{x}, \mathbf{y} (with $\left.x_{i}=P\left(f_{i} \mid w_{x}\right)\right)$
$\operatorname{dist}_{S S}(\vec{x}, \vec{y})=\sum_{i} x_{i} \log _{2}\left(\frac{x_{i}}{\left(x_{i}+y_{i}\right) / 2}\right)+y_{i} \log _{2}\left(\frac{y_{i}}{\left(x_{i}+y_{i}\right) / 2}\right)$

Kullback-Leibler divergence

When the vectors \mathbf{x} are probabilities, i.e. $x_{i}=P\left(f_{i} \mid w_{x}\right)$, we can measure the distance between the two distributions \mathbf{P} and \mathbf{Q}

The standard metric is Kullback-Leibler divergence $D(P / / Q)$

$$
\mathrm{D}(P \| Q)=\sum_{x} P(x) \log \frac{P(x)}{Q(x)}
$$

But KL divergence is not very good because it is

- Undefined if $P(x)=0$ and $Q(x) \neq 0$.
- Asymmetric: $D(P \| Q) \neq D(Q \| P)$

More recent developments

Neural embeddings

There is a lot of recent work on neural-net based word embeddings:
word2vec,https://code.google.com/p/word2vec/
Glove http://nlp.stanford.edu/projects/glove/
etc.
Using the vectors produced by these word embeddings instead of the raw words themselves can be very beneficial for many tasks.

This is currently a very active area of research.

"Semantic spaces"?

Does this mean that these vector spaces represent semantics?

Yes, but only to some extent.

- Different context definitions (or embeddings) give different vector spaces with different similarities
-Often, antonyms (hot/cold, etc.) have very similar vectors.
- Vector spaces are not well-suited to capturing hypernym relations (every dog is an animal)
We will get back to that when we talk more about lexical semantics.

Another open problem: how to get from words to the semantics of sentences

Analogies

It can be shown that for some of these embeddings, the learned word vectors can capture analogies:

Queen::King = Woman::Man
In the vector representation: queen \approx king - man + woman
Similar results for e.g. countries and capitals:
Germany::Berlin = France::Paris

Today's key concepts

Distributional hypothesis
Distributional similarities:
word-context matrix
representing words as vectors
positive PMI
computing the similarity of word vectors

