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Where we’re at
We have looked at how to obtain the meaning of 
sentences from the meaning of their words 
(represented in predicate logic).

Now we will look at how to represent the meaning of 
words (although this won’t be in predicate logic)

We will consider different tasks:
-Computing the semantic similarity of words  
by representing them in a vector space
-Finding groups of similar words by inducing word clusters
- Identifying different meanings of words  
by word sense disambiguation
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What we’re going to cover today
Pointwise mutual information

A very useful metric to identify events that frequency co-occur 

Distributional (Vector-space) semantics: 
Measure the semantic similarity of words  
in terms of the similarity of the contexts  
in which the words appear 

-The distributional hypothesis
-Representing words as (sparse) vectors
-Computing word similarities  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Using PMI to identify 
words that “go 
together”
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Discrete random variables
A discrete random variable X can take on values  
{x1,…, xn} with probability p(X = xi)  

A note on notation:
p(X) refers to the distribution, while p(X = xi) refers to the 
probability of a specific value xi. p(X = xi) also written as p(xi)

In language modeling, the random variables correspond 
to words W or to sequences of words W(1)…W(n).

Another note on notation:
We’re often sloppy in making the distinction between  
the i-th word [token] in a sequence/string, and  
the i-th word [type] in the vocabulary clear.
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Mutual information I(X;Y)
Two random variables X, Y are independent  
iff their joint distribution is equal to the product of their 
individual distributions:  

p( X, Y ) = p( X )p( Y )
That is, for all outcomes x, y:   

p( X=x, Y=x ) = p( X=x )p( Y=y )  

I(X;Y), the mutual information of two random 
variables X and Y  is defined as 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p(X = x, Y = y) log
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Pointwise mutual information (PMI)
Recall that two events x, y are independent  
if their joint probability is equal to the product of their 
individual probabilities: 

x,y are independent iff p(x,y) = p(x)p(y)
x,y are independent iff p(x,y)∕p(x)p(y) = 1

 
In NLP, we often use the pointwise mutual information 
(PMI) of two outcomes/events (e.g. words): 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PMI(x, y) = log

p(X = x, Y = y)

p(X = x)p(Y = y)
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Using PMI to find related words
Find pairs of words wi, wj that have high pointwise 
mutual information: 
 
 
 
Different ways of defining p(wi, wj)  
give different answers.
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PMI (wi, wj) = log

p(wi, wj)

p(wi)p(wj)
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Using PMI to find “sticky pairs”
p(wi, wj): probability that wi, wj are adjacent

Define p(wi, wj) = p(“wiwj”) 

High PMI word pairs under this definition: 
Humpty Dumpty,  Klux Klan,  Ku Klux,  Tse Tung,  
avant garde,  gizzard shad,  Bobby Orr,  mutatis mutandis,  
Taj Mahal,  Pontius Pilate,  ammonium nitrate,  
jiggery pokery,  anciens combattants,  fuddle duddle,  
helter skelter,  mumbo jumbo  
(and a few more)
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Back to lexical 
semantics…
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Different approaches to lexical semantics

Lexicographic tradition: 
-Use lexicons, thesauri, ontologies
-Assume words have discrete word senses:
bank1 = financial institution; bank2 = river bank, etc. 
-May capture explicit relations between word (senses):  
“dog” is a “mammal”, etc.

 
Distributional tradition:
-Map words to (sparse) vectors that capture corpus statistics 
-Contemporary variant: use neural nets to learn dense vector 
“embeddings” from very large corpora

(this is a prerequisite for most neural approaches to NLP)
-This line of work often ignores the fact that words have 
multiple senses or parts-of-speech
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Vector representations of words
“Traditional” distributional similarity approaches 
represent words as sparse vectors [today’s lecture]
-Each dimension represents one specific context 
-Vector entries are based on word-context co-occurrence 
statistics (counts or PMI values)

 
Alternative, dense vector representations: 
-We can use Singular Value Decomposition to turn these 
sparse vectors into dense vectors (Latent Semantic Analysis)
-We can also use neural models to explicitly learn a dense 
vector representation (embedding) (word2vec, Glove, etc.) 

Sparse vectors = most entries are zero  
Dense vectors = most entries are non-zero
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Distributional Similarities 
Measure the semantic similarity of words  
in terms of the similarity of the contexts  
in which the words appear

Represent words as vectors
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Why do we care about word similarity?
Question answering:
Q: “How tall is Mt. Everest?”  
Candidate A: “The official height of Mount Everest is 
29029 feet”

“tall” is similar to “height”
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Why do we care about word similarity?
Plagiarism detection
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Why do we care about word contexts?
What is tezgüino?
A bottle of tezgüino is on the table.  
Everybody likes tezgüino. 
Tezgüino makes you drunk.  
We make tezgüino out of corn.  
(Lin, 1998; Nida, 1975)

The contexts in which a word appears  
tells us a lot about what it means.  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The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same 
environments”
“If A and B have almost identical environments we say that 
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings
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Exploiting context for semantics
Distributional similarities (vector-space semantics): 
Use the set of contexts in which words (= word types) 
appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee) 
have similar meanings.  

Word sense disambiguation (future lecture) 
Use the context of a particular occurrence of a word 
(token) to identify which sense it has. 

Assumption: If a word has multiple distinct senses  
(e.g. plant: factory or green plant), each sense will appear in 
different contexts. 
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Distributional 
similarities
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Distributional similarities
Distributional similarities use the set of contexts  
in which words appear to measure their similarity.

They represent each word w as a vector w
w = (w1, …, wN) ∈ RN  

in an N-dimensional vector space.
-Each dimension corresponds to a particular context cn
-Each element wn of w captures the degree to which  
the word w is associated with the context cn.
-  wn depends on the co-occurrence counts of w and cn 

The similarity of words w and u is given by the 
similarity of their vectors w and u 
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Documents as contexts
Let’s assume our corpus consists of a (large) number 
of documents (articles, plays, novels, etc.) 

In that case, we can define the contexts of a word as 
the sets of documents in which it appears. 

Conversely, we can represent each document as the 
(multi)set of words which appear in it.
- Intuition: Documents are similar to each other if they contain 
the same words. 
-This is useful for information retrieval, e.g. to compute the 
similarity between a query (also a document) and any 
document in the collection to be searched.
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Term-Document Matrix
 
 
 
 
 
 
A Term-Document Matrix is a 2D table:
-Each cell contains the frequency (count) of the term (word) t 
in document d:  tft,d 
-Each column is a vector of counts over words, representing a 
document
-Each row is a vector of counts over documents, representing 
a word
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As	You	Like	It Twelfth	Night Julius	Caesar Henry	V
battle 1 1 8 15
soldier 2 2 12 36
fool 37 58 1 5
clown 6 117 0 0
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Term-Document Matrix
 
 
 
 
 
 
Two documents are similar if their vectors are similar
Two words are similar if their vectors are similar
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What is a ‘context’?
There are many different definitions of context  
that yield different kinds of similarities:

Contexts defined by nearby words: 
How often does w appear near the word drink?
Near = “drink appears within a window of ±k words of w”,  
or “drink appears in the same document/sentence as w”
This yields fairly broad thematic similarities. 

Contexts defined by grammatical relations:
How often is (the noun) w used as the subject (object)  
of the verb drink?  (Requires a parser).
This gives more fine-grained similarities. 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Using nearby words as contexts
-Decide on a fixed vocabulary of N context words c1..cN

Context words should occur frequently enough in your corpus that you get 
reliable co-occurrence counts, but you should ignore words that are too 
common (‘stop words’: a, the, on, in, and, or, is, have, etc.)   

-Define what ‘nearby’ means
 For example: w appears near c if c appears within ±5 words of w  

-Get co-occurrence counts of words w and contexts c 

-Define how to transform co-occurrence counts  
of words w and contexts c into vector elements wn
For example: compute (positive) PMI of words and contexts 

-Define how to compute the similarity of word vectors
For example: use the cosine of their angles.
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Defining and counting co-occurrence
Defining co-occurrences:
-Within a fixed window: vi occurs  within ±n words of w
-Within the same sentence: requires sentence boundaries
-By grammatical relations:  
vi occurs as a subject/object/modifier/… of verb w  
(requires parsing - and separate features for each relation) 

Counting co-occurrences:
- fi  as binary features (1,0): w does/does not occur with vi
- fi  as frequencies: w occurs n times with vi
- fi  as probabilities:  
e.g. fi is the probability that vi is the subject of w.
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Getting co-occurrence counts
Co-occurrence as a binary feature:

Does word w ever appear in the context c?  (1 = yes/0 = no)

Co-occurrence as a frequency count:
How often does word w appear in the context c? (0…n times)

 
 
 
 
Typically: 10K-100K dimensions (contexts), very sparse vectors
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arts boil data function large sugar water
apricot 0 1 0 0 1 1 1

pineapple 0 1 0 0 1 1 1

digital 0 0 1 1 1 0 0

information 0 0 1 1 1 0 0

arts boil data function large sugar water
apricot 0 1 0 0 5 2 7

pineapple 0 2 0 0 10 8 5

digital 0 0 31 8 20 0 0

information 0 0 35 23 5 0 0
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Counts vs PMI
Sometimes, low co-occurrences counts are very 
informative, and high co-occurrence counts are not:
-Any word is going to have relatively high co-occurrence 
counts with very common contexts (e.g. “it”, “anything”, “is”, 
etc.), but this won’t tell us much about what that word means. 
-We need to identify when co-occurrence counts are more 
likely than we would expect by chance. 

We therefore want to use PMI values instead of raw 
frequency counts: 

 
But this requires us to define p(w, c), p(w) and p(c) 
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PMI(w, c) = log

p(w, c)

p(w)p(c)
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Word-Word Matrix
Context: ± 7 words
 
 
 
 
Resulting word-word matrix:

f(w, c) = how often does word w appear in context c: 
“information” appeared six times in the context of “data” 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aardvark computer data pinch result sugar …
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0
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p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

pij =
fij

fij
j=1

C

∑
i=1

W

∑

p(wi ) =
fij

j=1

C

∑

N

p(cj ) =
fij

i=1

W

∑

N

p(w=information, c=data) = 6/19 = .32
p(w=information) = 11/19 = .58
p(c=data) = 7/19 = .37

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11

p(w,context) p(w)
computer data pinch result sugar

apricot 0.00 0.00 0.05 0.00 0.05 0.11
pineapple 0.00 0.00 0.05 0.00 0.05 0.11
digital 0.11 0.05 0.00 0.05 0.00 0.21
information 0.05 0.32 0.00 0.21 0.00 0.58

p(context) 0.16 0.37 0.11 0.26 0.11
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Computing PMI of w and c:  
Using a fixed window of ± k words

N: How many tokens does the corpus contain?
f(w) ≤ N: How often does w occur?
f(w, c) ≤ f(w,): How often does w occur with c in its window?
f(c) = ∑wf(w, c) ≤ N: How many tokens have c in their window?  

p(w) =  f(w)/N 
p(c) =  f(c)/N 
p(w, c) = f(w, c)/N
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PMI(w, c) = log

p(w, c)

p(w)p(c)
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Computing PMI of w and c:  
w and c in the same sentence

N: How many sentences does the corpus contain?
f(w) ≤ N: How many sentences contain w?
f(w, c) ≤ f(w): How many sentences contain w and c?
f(c) ≤ N: How many sentences contain c?  

p(w) =  f(w)/N 
p(c) =  f(c)/N 
p(w, c) = f(w, c)/N
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PMI(w, c) = log

p(w, c)

p(w)p(c)
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Using grammatical features
Observation: verbs have ‘selectional preferences’:

E.g. “eat” takes edible things as objects and animate entities 
as subjects.
Exceptions: metonymy (“The VW honked at me” )  
and metaphors: “Skype ate my credit”

 
This allows us to induce noun classes:

Edible things occur as objects of “eat”.
In general, nouns that occur as subjects/objects of specific verbs 
tend to be similar.  

This also allows us to induce verb classes:
Verbs that take the same class of nouns as arguments 
tend to be similar/related.
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Example: frequencies of grammatical relations

64M word corpus, parsed with Minipar (Lin, 1998)
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cell
sbj of absorb 1
sbj of adapt 1

sbj of behave 1
... ...

mod of abnormality 3
mod of anemia 8

...
obj of attack 6

obj of call 11
...
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Measuring association with 
context
-Every element fi of the co-occurrence vector corresponds to 
some word w’ (and possibly a relation r ):

  e.g. (r,w’)= (obj-of, attack) 

-The value of fi should indicate the association strength 
between (r, w’ ) and w. 

-What value should feature fi for word w have?
Probability P(fi | w): fi will be high for any frequent feature (regardless of w) 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Frequencies vs. PMI

�36

Count PMI

bunch beer 2 12.34

tea 2 11.75

liquid 2 10.53

champagne 4 11.75

anything 3 5.15

it 3 1.25

Objects of ‘drink’ (Lin, 1998)
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Positive Pointwise Mutual Information
PMI is negative when words co-occur less than 
expected by chance.

This is unreliable without huge corpora:
With P(w1) ≈ P(w2) ≈ 10-6, we can’t estimate whether P(w1,w2) 
is significantly different from 10-12

 
We often just use positive PMI values,  
and replace all PMI values < 0 with 0:

Positive Pointwise Mutual Information (PPMI):
PPMI(w,c) = PMI(w,c) if PMI(w,c) > 0  

                   = 0             if PMI(w,c) ≤ 0

�37



CS447: Natural Language Processing (J. Hockenmaier)

PMI and smoothing
PMI is biased towards infrequent events:

If P(w, c) = P(w) = P(c), then PMI(w,c) = log(1/P(w))
So PMI(w, c) is larger for rare words w with low P(w).

Simple remedy: Add-k smoothing of P(w, c), P(w), P(c)  
pushes all PMI values towards zero.
Add-k smoothing affects low-probability events more, 
and will therefore reduce the bias of PMI  towards 
infrequent events.

(Pantel & Turney 2010)
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Vector similarity
In distributional models, every word is a point in n-dimensional 
space.
How do we measure the similarity between two points/vectors?  

In general:
-Manhattan distance (Levenshtein distance, L1 norm) 
 
 

-Euclidian distance (L2 norm)
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distL1(⌅x, ⌅y) =
N�

i=1

|xi � yi|

distL2(⌅x, ⌅y) =

⌅⇤⇤⇥
N�

i=1

(xi � yi)2 X

Y

L1L2
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Dot product as similarity
If the vectors consist of simple binary features (0,1), 
we can use the dot product as similarity metric: 
 
 
 
 

The dot product is a bad metric if the vector elements 
are arbitrary features: it prefers long vectors
- If one xi is very large (and yi nonzero), sim(x,y) gets very large  

If the number of nonzero xi and yi s is very large, sim(x,y) gets very large.
- Both can happen with frequent words.
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simdot�prod(⌅x, ⌅y) =
N�

i=1

xi � yi

length of ⇥x : |⇥x| =

⌅⇤⇤⇥
N�

i=1

x2
i
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Vector similarity: Cosine
One way to define the similarity of two vectors  
is to use the cosine of their angle. 

The cosine of two vectors is their dot product,  
divided by the product of their lengths: 
 
 
 

sim(w, u) = 1: w and u point in the same direction
sim(w, u) = 0: w and u are orthogonal 
sim(w, u) = −1: w and u point in the opposite direction
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simcos(⌅x, ⌅y) =
�N

i=1 xi ⇥ yi⇥�N
i=1 x2

i

⇥�N
i=1 y2

i

=
⌅x · ⌅y

|⌅x||⌅y|
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Kullback-Leibler divergence
When the vectors x are probabilities, i.e. xi = P( fi | wx), we can 
measure the distance between the two distributions P and Q 

The standard metric is Kullback-Leibler divergence D(P||Q)  
 
 
 
 

But KL divergence is not very good because it is 
-Undefined if P(x)=0 and Q(x) ≠ 0.
-Asymmetric: D(P||Q) ≠ D(Q||P )
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D(P ||Q) =
�

x

P (x) log
P (x)
Q(x)
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Jensen/Shannon divergence
Instead, we use the Jensen/Shannon divergence: 
the distance of each distribution from their average. 

-Average of P and Q:  

-Jensen/Shannon divergence of P and Q: 
 
 

-As a distance measure between x,y (with xi = P( fi | wx ) )
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JS(P ||Q) = D(P ||AvgP,Q) + D(Q||AvgP,Q)

AvgP,Q(x) =
P (x) + Q(x)

2

distJS(⇤x,⇤y) = �
i

xi log2

�
xi

(xi + yi)/2

⇥
+ yi log2

�
yi

(xi + yi)/2
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More recent 
developments
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Neural embeddings
There is a lot of recent work on neural-net based  
word embeddings:

word2vec,https://code.google.com/p/word2vec/ 
Glove  http://nlp.stanford.edu/projects/glove/
etc.

Using the vectors produced by these word 
embeddings instead of the raw words themselves  
can be very beneficial for many tasks.
 
This is currently a very active area of research.
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Analogies
It can be shown that for some of these embeddings, 
the learned word vectors can capture analogies:

Queen::King = Woman::Man
In the vector representation: queen ≈ king − man + woman

Similar results for e.g. countries and capitals:
Germany::Berlin = France::Paris
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“Semantic spaces”?
Does this mean that these vector spaces represent 
semantics?

Yes, but only to some extent. 
-Different context definitions (or embeddings) give different 
vector spaces with different similarities
-Often, antonyms (hot/cold, etc.) have very similar vectors.
-Vector spaces are not well-suited to capturing hypernym 
relations (every dog is an animal)

We will get back to that when we talk more about lexical 
semantics. 

Another open problem: how to get from words to the 
semantics of sentences
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Today’s key concepts
Distributional hypothesis

Distributional similarities: 
word-context matrix
representing words as vectors
positive PMI
computing the similarity of word vectors
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