
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 12:
Dependency Parsing;
Expressive Grammars

CS447: Natural Language Processing (J. Hockenmaier)

Dependency Parsing

�2

CS447 Natural Language Processing

A dependency parse

�3

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

Dependencies are (labeled) asymmetrical binary relations
between two lexical items (words). 

CS447 Natural Language Processing

Parsing algorithms for DG
‘Transition-based’ parsers:

learn a sequence of actions to parse sentences
Models:  
State = stack of partially processed items  
 + queue/buffer of remaining tokens  
 + set of dependency arcs that have been found already  
Transitions (actions) = add dependency arcs; stack/queue operations

‘Graph-based’ parsers:
learn a model over dependency graphs
Models:  
a function (typically sum) of local attachment scores
For dependency trees, you can use a minimum spanning tree algorithm

�4

CS447 Natural Language Processing

Transition-based parsing
(Nivre et al.)

�5 CS447 Natural Language Processing

Transition-based parsing: assumptions
This algorithm works for projective dependency trees.
Dependency tree:

Each word has a single parent  
(Each word is a dependent of [is attached to] one other word) 

Projective dependencies:
There are no crossing dependencies.
For any i, j, k with i < k < j: if there is a dependency between wi and wj,
the parent of wk is a word wl between (possibly including) i and j: i ≤ l ≤ j,
while any child wm of wk has to occur between (excluding) i and j: i<m<j

�6

wi wk wj
wi wk wj the parent of wk:

one of wi…wj

any child of wk:
one of wi+1…wj-1

CS447 Natural Language Processing

Transition-based parsing
Transition-based shift-reduce parsing processes  
the sentence S = w0w1...wn from left to right.
Unlike CKY, it constructs a single tree.

Notation:
w0 is a special ROOT token.
VS = {w0, w1, ..., wn} is the vocabulary of the sentence
R is a set of dependency relations

The parser uses three data structures:
σ: a stack of partially processed words wi ∈ VS

β: a buffer of remaining input words wi ∈ VS

A: a set of dependency arcs (wi, r, wj) ∈ VS × R ×VS
�7 CS447 Natural Language Processing

Parser configurations (σ, β, A)
The stack σ is a list of partially processed words

We push and pop words onto/off of σ.
σ|w : w is on top of the stack.
Words on the stack are not (yet) attached to any other words.
Once we attach w, w can’t be put back onto the stack again.

 
The buffer β is the remaining input words

We read words from β (left-to-right) and push them onto σ
w|β : w is on top of the buffer.

 
The set of arcs A defines the current tree.

We can add new arcs to A by attaching the word on top of the
stack to the word on top of the buffer, or vice versa.

�8

CS447 Natural Language Processing

Parser configurations (σ, β, A)
We start in the initial configuration ([w0], [w1,..., wn], {})
 
(Root token, Input Sentence, Empty tree)
 
We can attach the first word (w1) to the root token w0,  
or we can push w1 onto the stack.
(w0 is the only token that can’t get attached to any other word)

We want to end in the terminal configuration ([], [], A)
 
(Empty stack, Empty buffer, Complete tree)
 
Success!  
We have read all of the input words (empty buffer) and have
attached all input words to some other word (empty stack)

�9 CS447 Natural Language Processing

Transition-based parsing
We process the sentence S = w0w1...wn from left to
right (“incremental parsing”)

In the parser configuration (σ|wi, wj|β, A):
wi is on top of the stack. wi may have some children
wj is on top of the buffer. wj may have some children
wi precedes wj (i < j)

We have to either attach wi to wj, attach wj to wi, or
decide that there is no dependency between wi and wj

 
If we reach (σ|wi, wj|β, A), all words wk with i < k < j have
already been attached to a parent wm with i ≤ m ≤ j

�10

CS447 Natural Language Processing

Parser actions
(σ, β, A): Parser configuration with stack σ, buffer β, set of arcs A
(w, r, w’): Dependency with head w, relation r and dependent w’

SHIFT: Push the next input word wi from the buffer β onto the stack σ
 (σ, wi|β, A) ⇒ (σ|wi, β, A) 

LEFT-ARCr: … wi…wj… (dependent precedes the head)
Attach dependent wi (top of stack σ) to head wj (top of buffer β)  
with relation r from wj to wi. Pop wi off the stack.
 (σ|wi, wj|β, A) ⇒ (σ, wj|β, A ∪ {(wj, r, wi)})  

RIGHT-ARCr: …wi…wj … (dependent follows the head)
Attach dependent wj (top of buffer β) to head wi (top of stack σ)  
with relation r from wi to wj. Move wi back to the buffer
 (σ|wi, wj|β, A) ⇒ (σ, wi|β, A ∪ {(wi, r, wj)})

�11 CS447 Natural Language Processing

An example sentence & parse

�12

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

CS447 Natural Language Processing �13

Economic news had little effect on financial markets .

CS447 Natural Language Processing �14

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �15

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �16

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �17

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �18

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �19

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �20

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �21

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �22

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �23

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �24

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �25

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �26

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �27

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �28

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �29

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �30

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �31

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �32

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �33

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing

Transition-based parsing in practice
Which action should the parser take under the current
configuration?

We also need a parsing model that assigns a score  
to each possible action given a current configuration.
-Possible actions:  
SHIFT, and for any relation r: LEFT-ARCr, or RIGHT-ARCr
-Possible features of the current configuration: 
The top {1,2,3} words on the buffer and on the stack,  
their POS tags, distances between the words, etc.

We can learn this model from a dependency
treebank.

�34

CS447 Natural Language Processing

Expressive Grammars

�35 CS447 Natural Language Processing

Why grammar?

Surface  
string

Mary saw John

Meaning
representation

Logical form:
saw(Mary,John)

 
Grammar

Parsing

Generation
Pred-arg structure:

 PRED saw  
 AGENT Mary  
 PATIENT John

Dependency graph:
 saw  

Mary John

�36

CS447 Natural Language Processing

Grammar formalisms
Formalisms provide a language in which linguistic
theories can be expressed and implemented  

Formalisms define elementary objects 
(trees, strings, feature structures)  
and recursive operations which generate  
complex objects from simple objects. 

Formalisms may impose constraints  
(e.g. on the kinds of dependencies they can
capture)

�37 CS447 Natural Language Processing

How do grammar formalisms differ?

Formalisms define different representations
Tree-adjoining Grammar (TAG):

Fragments of phrase-structure trees
Lexical-functional Grammar (LFG):

Annotated phrase-structure trees (c-structure) 
linked to feature structures (f-structure)

Combinatory Categorial Grammar (CCG):
Syntactic categories paired with meaning representations

Head-Driven Phrase Structure Grammar(HPSG):
Complex feature structures (Attribute-value matrices)

�38

CS447 Natural Language Processing

The dependencies so far:
Arguments:

Verbs take arguments: subject, object, complements, ...
Heads subcategorize for their arguments  

Adjuncts/Modifiers:
Adjectives modify nouns, adverbs modify VPs or adjectives,
PPs modify NPs or VPs
Modifiers subcategorize for the head 

Typically, these are local dependencies: they can be
expressed within individual CFG rules
 
 
 VP → Adv Verb NP 

�39 CS447 Natural Language Processing

CFGs capture only nested dependencies
The dependency graph is a tree
The dependencies do not cross

Context-free grammars

�40

CS447 Natural Language Processing

Dependencies form a tree with crossing branches  

Beyond CFGs: Nonprojective dependencies

�41 CS447 Natural Language Processing

Non-projective dependencies
(Non-local) scrambling: In a sentence with multiple verbs, the
argument of a verb appears in a different clause from that which
contains the verb (arises in languages with freer word order than
English)

Die Pizza hat Klaus versprochen zu bringen 
The pizza has Klaus promised to bring  
Klaus has promised to bring the pizza

Extraposition: Here, a modifier of the subject NP is moved to the
end of the sentence

The guy is coming who is wearing a hat  
Compare with the non-extraposed variant 
The [guy [who is wearing a hat]] is coming

Topicalization: Here, the argument of the embedded verb is moved
to the front of the sentence.

Cheeseburgers, I [thought [he likes]]

�42

CS447 Natural Language Processing

Dependencies form a DAG  
(a node may have multiple incoming edges)
Arise in the following constructions:
- Control (He has promised me to go), raising (He seems to go)
- Wh-movement (the man who you saw yesterday is here again),
- Non-constituent coordination  

(right-node raising, gapping, argument-cluster coordination)

Beyond CFGs:  
Nonlocal dependencies

�43 CS447 Natural Language Processing

Dependency structures
Nested (projective) 
dependency trees
(CFGs) 
 

Non-projective  
dependency trees

Non-local dependency
graphs

�44

CS447 Natural Language Processing

Non-local
dependencies

�45 CS447 Natural Language Processing

Bounded long-range dependencies:
Limited distance between the head and argument 

Unbounded long-range dependencies:
Arbitrary distance (within the same sentence)  
between the head and argument 

Unbounded long-range dependencies cannot (in
general) be represented with CFGs. 

Chomsky’s solution:  
Add null elements (and co-indexation)

Long-range dependencies

�46

CS447 Natural Language Processing

Unbounded nonlocal dependencies

Wh-questions and relative clauses contain
unbounded nonlocal dependencies, where the
missing NP may be arbitrarily deeply embedded:
 
‘the sushi that [you told me [John saw [Mary eat]]]’
 
‘what [did you tell me [John saw [Mary eat]]]?’ 
 

Linguists call this phenomenon wh-extraction  
(wh-movement).

�47 CS447 Natural Language Processing

Non-local dependencies
in wh-extraction

�48

NP

NP SBAR

SIN
VPNP

S

VPNP

V

V

the sushi
that

you

told

NP

me

John

saw

S

VPNP

VMary
eat

CS447 Natural Language Processing

The trace analysis of
wh-extraction

�49

NP

NP

NP SBAR

SIN
VPNP

S

VPNP

V

V

the sushi
 that

you

told

NP

me

John

saw

S

VPNP

VMary
eat *T*

trace

CS447 Natural Language Processing

Slash categories for wh-extraction
Because only one element can be extracted, we can use
slash categories.
This is still a CFG: the set of nonterminals is finite. 
 
 
 
 
 
 
 
 
 

Generalized Phrase Structure Grammar 
(GPSG), Gazdar et al. (1985)

�50

NP

NP SBAR
S/NPIN

VP/NPNP

S/NP
VP/NPNP

V

V

the sushi
 that

you

told
NP
me

John
saw

S/NP
 VP/NPNP

VMary
eat

CS447 Natural Language Processing

German: center embedding

...daß ich [Hans schwimmen] sah  

...that I Hans swim saw  

...that I saw [Hans swim] 
 

...daß ich [Maria [Hans schwimmen] helfen] sah  

...that I Maria Hans swim help saw  

...that I saw [Mary help [Hans swim]] 
 
 

...daß ich [Anna [Maria [Hans schwimmen] helfen] lassen] sah  

...that I Anna Maria Hans swim help let saw  

...that I saw [Anna let [Mary help [Hans swim]]]

�51 CS447 Natural Language Processing

Dutch: cross-serial dependencies
...dat ik Hans zag zwemmen  
...that I Hans saw swim 
...that I saw [Hans swim] 

...dat ik Maria Hans zag helpen zwemmen  

...that I Maria Hans saw help swim  

...that I saw [Mary help [Hans swim]] 
 
 

...dat ik Anna Maria Hans zag laten helpen zwemmen  

...that I Anna Maria Hans saw let help swim 

...that I saw [Anna let [Mary help [Hans swim]]]

Such cross-serial dependencies require  
mildly context-sensitive grammars

�52

CS447 Natural Language Processing

Two mildly
context-sensitive
formalisms:
TAG and CCG

�53 CS447 Natural Language Processing

Recursively enumerable

The Chomsky Hierarchy

Context-sensitive

Mildly context-sensitive

Context-free

Regular

�54

CS447 Natural Language Processing

Mildly context-sensitive grammars
Contain all context-free grammars/languages  

Can be parsed in polynomial time (TAG/CCG: O(n6))  
 
(Strong generative capacity) capture certain kinds of
dependencies: nested (like CFGs) and cross-serial (like the
Dutch example), but not the MIX language:

MIX: the set of strings w ∈ {a, b, c}* that contain equal numbers of as, bs and cs

Have the constant growth property: 
the length of strings grows in a linear way 
The power-of-2 language {a2n} does not have the constant
growth propery.

�55 CS447 Natural Language Processing

TAG and CCG are
lexicalized formalisms

The lexicon:
-pairs words with elementary objects
-specifies all language-specific information  
(e.g. subcategorization information) 

The grammatical operations:
-are universal
-define (and impose constraints on) recursion.

�56

CS447 Natural Language Processing

A (C)CG derivation

�57

CCG categories are defined recursively:
-Categories are atomic (S, NP) or complex (S\NP, (S\NP)/NP)
-Complex categories (X/Y or X\Y) are functions:
X/Y combines with an adjacent argument to its right of category Y to return a
result of category X.

Function categories can be composed, giving more
expressive power than CFGs

More on CCG in one of our Semantics lectures!
CS447 Natural Language Processing

Tree-Adjoining Grammar

�58

CS447 Natural Language Processing

(Lexicalized) Tree-Adjoining Grammar

AK Joshi and Y Schabes (1996)
Tree Adjoining Grammars.  

In G. Rosenberg and A. Salomaa,
Eds., Handbook of Formal

Languages

TAG is a tree-rewriting formalism:
TAG defines operations (substitution, adjunction) on trees.
The elementary objects in TAG are trees (not strings) 

TAG is lexicalized:
Each elementary tree is anchored to a lexical item (word)
“Extended domain of locality”: 
The elementary tree contains all arguments of the anchor.
TAG requires a linguistic theory which specifies the shape  
of these elementary trees. 

TAG is mildly context-sensitive:
can capture Dutch cross-serial dependencies
but is still efficiently parseable

�59 CS447 Natural Language Processing

Extended domain of locality

S
NP VP

VBZ NP

eats

We want to capture all arguments of a word  
in a single elementary object.

We also want to retain certain syntactic structures  
(e.g. VPs).

Our elementary objects are tree fragments:

�60

CS447 Natural Language Processing

TAG substitution (arguments)

Substitute X YX↓ Y↓

α1:

Xα2: Yα3:

α2 α3

α1Derivation tree:

Derived tree:

�61 CS447 Natural Language Processing

ADJOIN

TAG adjunction

X
X*

X

X

X*

Auxiliary
tree

Foot node
α1:

β1:

α1

β1

Derived tree:

Derivation tree:

�62

CS447 Natural Language Processing

The effect of adjunction
TIG: 

sister  
adjunction

TAG: 
wrapping  

adjunction

No adjunction: TSG (Tree substitution grammar)
TSG is context-free

Sister adjunction: TIG (Tree insertion grammar)
TIG is also context-free, but has a linguistically more adequate
treatment of modifiers 

Wrapping adjunction: TAG (Tree-adjoining grammar)
TAG is mildy context-sensitive

�63 CS447 Natural Language Processing

A small TAG lexicon

S

NP VP

VBZ NP

eats

 α1:

NP

John

α2:

VP
RB VP*

always

β1:

NP

tapas

α3:

�64

CS447 Natural Language Processing

A TAG derivation
S

NP VP

VBZ NP

eats

NP

John

NP

tapas

VP

RB VP*

always

NP

NP

NP

NP

α2:

α1:

β1:
α3:

α1

α3α2

�65 CS447 Natural Language Processing

A TAG derivation
S

NP VP
VBZ NP

eats tapas

VP
RB VP*

always

John

VP

VP

α1

α3α2 β1

β1

�66

CS447 Natural Language Processing

A TAG derivation
S

NP

VBZ
VP

NP

eats tapas

VP
RB VP*

always
John

�67 CS447 Natural Language Processing

anbn: Cross-serial dependencies
Elementary trees:

Deriving aabb

S

a

b

S

S*

S

a
b

S

S

a
b

S
S

a

b

S

S*

S

a

b
S

S

S

a

b
SS

�68

CS447 Natural Language Processing

Feature Structure
Grammars

�69 CS447 Natural Language Processing

Simple grammars overgenerate

This generates ungrammatical sentences like  
“these student eats a cakes”  

We need to capture (number/person) agreement

S → NP VP

VP → Verb NP

NP → Det Noun

Det → the | a | these

Verb → eat |eats

Noun → cake |cakes | student | students

�70

CS447 Natural Language Processing

Refining the nonterminals

This yields very large grammars.
What about person, case, ...?

Difficult to capture generalizations.
Subject and verb have to have number agreement
NPsg, NPpl and NP are three distinct nonterminals

S → NPsg VPsg

S → NPpl VPpl

VPsg → VerbSg NP

VPpl → VerbPl NP

NPsg → DetSg NounSg

DetSg → the | a

...

�71 CS447 Natural Language Processing

Replace atomic categories with feature structures:  
 
 
 
 

A feature structure is a list of features (= attributes),
e.g. CASE, and values (eg NOM).
 
We often represent feature structures as  
attribute value matrices (AVM)
Usually, values are typed (to avoid CASE:SG)

Feature structures

�72

CS447 Natural Language Processing

Feature structures
as directed graphs

�73

= NP

Sg

3

PERS

Nom

CASE NUM
CAT

CS447 Natural Language Processing

Complex feature structures
We distinguish between atomic and complex
feature values.
A complex value is a feature structure itself.  

This allows us to capture better generalizations.

Only atomic values:

�74

Complex values:

CS447 Natural Language Processing

Feature paths

A feature path allows us to identify  
particular values in a feature structure: 

〈NP CAT〉 = NP
〈NP AGR CASE〉 = NOM  

�75

NP:

CS447 Natural Language Processing

Two feature structures A and B unify (A ⊔ B) 
if they can be merged into one consistent feature
structure C:  
 
 
 

Otherwise, unification fails:

Unification

�76

CS447 Natural Language Processing

CFG rules are augmented with constraints:
 A0 → A1 ... An
 {set of constraints}

There are two kinds of constraints:
Unification constraints: 
 〈Ai feature-path〉 = 〈 Aj feature-path〉  

Value constraints:
 〈Ai feature-path〉 = atomic value

PATR-II style
feature structures

�77 CS447 Natural Language Processing

Lexical entry

Constraints

Grammar rule

Constraints

Grammar rule

Constraints

S → NP VP
〈NP NUM〉 = 〈VP NUM〉
〈NP CASE〉 = nom

NP → DT NOUN
〈NP NUM〉 = 〈NOUN NUM〉
〈NP CASE〉 = 〈NOUN CASE〉

NOUN → cake
〈NOUN NUM〉 = sg

A grammar with feature structures

�78

CS447 Natural Language Processing

Lexical entry

Constraints

Grammar rule

Constraints

Grammar rule

Constraints

S → NP VP
〈NP AGR〉 = 〈VP AGR〉
〈NP CASE〉 = nom

NP → DT NOUN
〈NP AGR〉 = 〈NOUN AGR〉

NOUN → cake
〈NOUN AGR NUM〉 = sg

With complex feature structures

�79

Complex feature structures capture better
generalizations (and hence require fewer

constraints) — cf. the previous slide
CS447 Natural Language Processing

Attribute-Value Grammars
and CFGs

If every feature can only have a finite set of values,  
any attribute-value grammar can be compiled out  
into a (possibly huge) context-free grammar

�80

CS447 Natural Language Processing

Going beyond CFGs

The power-of-2 language: L2 = {wi | i is a power of 2}
L2 is a (fully) context-sensitive language.  
(Mildly context-sensitive languages have the constant growth
property (the length of words always increases by a constant factor c)) 

 
Here is a feature grammar which generates L2: 
 
 
 

�81

A ! a
hA Fi= 1

A ! A1 A2

hA Fi= hA1i
hA Fi= hA2i

CS447 Natural Language Processing

Today’s key concepts
Transition-based dependency parsing

for projective dependency trees

Going beyond projective dependencies:
non-projective dependencies
non-local dependencies

Expressive Grammars
TAG
CCG
Feature-Structure Grammars

�82

