CS447: Natural Language Processing

http.//courses.engtr.illinois.edu/cs447

Lecture 12:
Dependency Parsing;
Expressive Grammars

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Dependency Parsing

CS447: Natural Language Processing (J. Hockenmaier)

A dependency parse

PU
PRED
VA;\SBJ ATT

ROOT Economic news had little effect on financial markets .

Dependencies are (labeled) asymmetrical binary relations
between two lexical items (words).

CS447 Natural Language Processing 3

Parsing algorithms for DG

‘Transition-based’ parsers:

learn a sequence of actions to parse sentences

Models:
State = stack of partially processed items

+ queue/buffer of remaining tokens

+ set of dependency arcs that have been found already
Transitions (actions) = add dependency arcs; stack/queue operations

‘Graph-based’ parsers:

learn a model over dependency graphs

Models:
a function (typically sum) of local attachment scores

For dependency trees, you can use a minimum spanning tree algorithm

CS447 Natural Language Processing 4

Transition-based parsing
(Nivre et al.)

CS447 Natural Language Processing

Transition-based parsing: assumptions

This algorithm works for projective dependency trees.

Dependency tree:

Each word has a single parent
(Each word is a dependent of [is attached to] one other word)

Projective dependencies:
There are no crossing dependencies.
For any i, j, k withi <k < j: if there is a dependency between wi and w;,
the parent of wy is a word w; between (possibly including) i and j:i <1<,
while any child wy, of wix has to occur between (excluding) i and j: i<m<]

the parent of wk: /\ any child of w: ij

Wi Wk Wi oone Of Wis1...Wj1

CS447 Natural Language Processing 6

A

Transition-based parsing

Transition-based shift-reduce parsing processes
the sentence S = wowi...wn from left to right.

Unlike CKY, it constructs a single tree.

Notation:
wois a special ROOT token.

Vs= {wo, Wi, ..., Wa} IS the vocabulary of the sentence
R is a set of dependency relations

The parser uses three data structures:
o: a stack of partially processed words wie Vs

3. a buffer of remaining input words wj e Vs

A: a set of dependency arcs (Wi, I, Wj) € Vs X R xV5s
CS447 Natural Language Processing

Parser configurations (o, 3, A)

The stack o is a list of partially processed words
We push and pop words onto/off of .
o|w : w is on top of the stack.

Words on the stack are not (yet) attached to any other words.
Once we attach w, w can’t be put back onto the stack again.

The buffer B is the remaining input words

We read words from B (left-to-right) and push them onto ¢
w|p : w is on top of the buffer.

The set of arcs A defines the current tree.

We can add new arcs to A by attaching the word on top of the
stack to the word on top of the buffer, or vice versa.

CS447 Natural Language Processing 8

Parser configurations (o, f,A)

We start in the initial configuration (|wo], [Wi,..., Wa|, {})

(Root token, Input Sentence, Empty tree)

We can attach the first word (w1) to the root token wy,

or we can push wj onto the stack.
(wo is the only token that can’t get attached to any other word)

We want to end in the terminal configuration ([], [], A)
(Empty stack, Empty buffer, Complete tree)

Success!
We have read all of the input words (empty buffer) and have
attached all input words to some other word (empty stack)

CS447 Natural Language Processing 9

Transition-based parsing

We process the sentence S = wowi...wn from left to
right (“incremental parsing”)

In the parser configuration (olwi, w;lf3, A):
wi IS on top of the stack. wi may have some children

w;j is on top of the buffer. wymay have some children
wi precedes w; (i<j)

We have to either attach wito w;, attach w;to w;, or
decide that there is no dependency between w; and w;

If we reach (olwi, w;lf3, A), all words wi with i <k < j have
already been attached to a parent w,, with i=m = j

CS447 Natural Language Processing 10

Parser actions

(o, p,A): Parser configuration with stack o, buffer 8, set of arcs A
(w, r, w’): Dependency with head w, relation r and dependent w’

SHIFT: Push the next input word wi from the buffer B onto the stack o
(o, wilB, A) = (o|wi, B, A)

¥)

LEFT-ARCy ... Wi...Wj... (dependent precedes the head)
Attach dependent w; (top of stack o) to head w; (top of buffer p)
with relation r from wjto wi. Pop wi off the stack.

(o|wi, wj|B, A) = (o, wj|B, A U {(Wj, I, Wi)})

>
RIGHT-ARC:: ...Wi...Wj ... (dependent follows the head)

Attach dependent w; (top of buffer p) to head wi (top of stack o)
with relation r from wito w;. Move wiback to the buffer
(G|Wi9 leBa A) = (69 WilBa AU {(Wia I, WJ)})

CS447 Natural Language Processing 1

An example sentence & parse

PU

- PC

PRED

ATT SBJ

YA

ROOT Economic news had little effect on financial markets .

CS447 Natural Language Processing

12

Economic news had little effect on financial markets .

CS447 Natural Language Processing

13

Economic news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)

CS447 Natural Language Processing 14

Economic news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)

CS447 Natural Language Processing 15

Economic news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))

CS447 Natural Language Processing 16

Economic news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})

CS447 Natural Language Processing 17

news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LAt = ([rOOT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aqp)

CS447 Natural Language Processing 18

news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],

CS447 Natural Language Processing

¥)

)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})

19

had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],
SH = ([roor, had], [little, ..., .],

CS447 Natural Language Processing

%)

)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})
Aj)

20

had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aq)
LAsg; = ([roOT], [had, ...,], A> = Ay1U{(had, SBJ, news)})
SH = ([roor, had], [little, ..., .], Ar)
SH = ([roor, had, little], [effect, ...,], Ar)

CS447 Natural Language Processing 21

had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aq)
LAsg; = ([roOT], [had, ...,], A> = Ay1U{(had, SBJ, news)})
SH = ([roor, had], [little, ..., .], Ar)
SH = ([roor, had, little], [effect, ...,], Ar)
LA rr = ([rooT, had], [effect, ...,], Az = ArU{(effect, ATT, little)})

CS447 Natural Language Processing 22

had effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,],

SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],

SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],

SH = ([roor, had], [little, ..., .],

SH = ([roor, had, little], [effect, ...,],
LA rr = ([rooT, had], [effect, ...,],

SH = ([roor, had, effect], [on,...,.],

CS447 Natural Language Processing

)

V)

A1 = {(news, ATT, Economic)})
Ar)

Ay = A1 U{(had, SBJ, news)})
A2)

A2)

Az = Ay U{(effect, ATT, little)})
A3)

23

had effect on financial markets .

Transition Configuration

([rooT],

SH = ([rooT, Economic],
LAarr = ([roOOT],

SH = ([rooT, news],
LAsg; = ([roOT],

SH = ([roor, had],

SH = ([roor, had, little],
LA+t = ([rooT, had],

SH = ([roor, had, effect],

SH = ([roor, ...on],

[Economic, ...,.], @)

[news, ..., .], @)

[news, ..., .], Ay = {(news, ATT, Economic)})
[had, ...,], Aq)

[had, ...,], A> = Ay1U{(had, SBJ, news)})
[little, ..., .], Ar)

[effect, ...,], Ar)

[effect, ...,], Az = ArU{(effect, ATT, little)})
[on, ..., .], A3z)

[financial, markets, .], A3)

CS447 Natural Language Processing 24

had effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aq)
LAsg; = ([roOT], [had, ...,], A> = Ay1U{(had, SBJ, news)})
SH = ([roor, had], [little, ..., .], Ar)
SH = ([roor, had, little], [effect, ...,], Ar)
LA rr = ([rooT, had], [effect, ...,], Az = ArU{(effect, ATT, little)})
SH = ([roor, had, effect], [on,...,.], A3z)
SH = ([roor, ...on], [financial, markets, .], A3)
SH = ([roor, ..., financial], [markets, .], Az)

CS447 Natural Language Processing 25

had effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aq)
LAsg; = ([roOT], [had, ...,], A> = Ay1U{(had, SBJ, news)})
SH = ([roor, had], [little, ..., .], Ar)
SH = ([roor, had, little], [effect, ...,], Ar)
LA rr = ([rooT, had], [effect, ...,], Az = ArU{(effect, ATT, little)})
SH = ([roor, had, effect], [on,...,.], A3z)
SH = ([roor, ...on], [financial, markets, .], A3)
SH = ([roor, ..., financial], [markets, .], Az)
LA rr = ([rOOT, ...on], [markets, .], Ay = A3U{(markets, ATT, financial)})

CS447 Natural Language Processing 26

had effect on markets .

Transition Configuration

([rooT], [Economic, ...,.], @)

SH = ([rooT, Economic], [news, ...,], 7))

LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aq)

LAsg; = ([roOT], [had, ...,], A> = Ay1U{(had, SBJ, news)})
SH = ([roor, had], [little, ..., .], Ar)
SH = ([roor, had, little], [effect, ...,], Ar)

LA, rr = ([rooT, had], [effect, ...,], Az = ArU{(effect, ATT, little)})
SH = ([roor, had, effect], [on,...,.], A3z)
SH = ([roor, ...on], [financial, markets, .], A3)
SH = ([roor, ..., financial], [markets, .], Az)

LA rr = ([rOOT, ...on], [markets, .], Ay = A3U{(markets, ATT, financial)})

RA;c = ([roor, had, effect], [on, .], As = A4U{(on, PC, markets)})

CS447 Natural Language Processing 27

had effect on

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],
SH = ([roor, had], [little, ..., .],
SH = ([roor, had, little], [effect, ...,],
LA, rr = ([rooT, had], [effect, ...,],
SH = ([roor, had, effect], [on,...,.],
SH = ([roor, ...on], [financial, markets, .],
SH = ([roor, ..., financial], [markets, .],
LA rr = ([rOOT, ...on], [markets, .],
RA;c = ([roor, had, effect], [on, .],
RArt = ([rooT, had], [effect, .],

CS447 Natural Language Processing

%)

%)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})
Aj)

Aj)

Az = ArU{(effect, ATT, little)})
A3)

A3)

A3)

Ay = A3U{(markets, ATT, financial)})
As = AgU{(on, PC, markets)})
Ag = AsU{(effect, AT'T, on)})

28

had effect

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],
SH = ([roor, had], [little, ..., .],
SH = ([roor, had, little], [effect, ...,],
LA, rr = ([rooT, had], [effect, ...,],
SH = ([roor, had, effect], [on,...,.],
SH = ([roor, ...on], [financial, markets, .],
SH = ([roor, ..., financial], [markets, .],
LA rr = ([rOOT, ...on], [markets, .],
RA;c = ([roor, had, effect], [on, .],
RArt = ([rooT, had], [effect, .],
RAog; = ([roOT], [had,],

CS447 Natural Language Processing

%)

%)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})
Aj)

Aj)

Az = ArU{(effect, ATT, little)})
A3)

A3)

A3)

Ay = A3U{(markets, ATT, financial)})
As = AgU{(on, PC, markets)})
Ag = AsU{(effect, AT'T, on)})
A7 = AgU{(had, OBJ, effect)})

29

had

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],
SH = ([roor, had], [little, ..., .],
SH = ([roor, had, little], [effect, ...,],
LA, rr = ([rooT, had], [effect, ...,],
SH = ([roor, had, effect], [on,...,.],
SH = ([roor, ...on], [financial, markets, .],
SH = ([roor, ..., financial], [markets, .],
LA rr = ([rOOT, ...on], [markets, .],
RA;c = ([roor, had, effect], [on, .],
RArt = ([rooT, had], [effect, .],
RAog; = ([roOT], [had,],
SH = ([roor, had], [],

CS447 Natural Language Processing

%)

%)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})
Aj)

Aj)

Az = ArU{(effect, ATT, little)})
A3)

A3)

A3)

Ay = A3U{(markets, ATT, financial)})
As = AgU{(on, PC, markets)})
Ag = AsU{(effect, AT'T, on)})
A7 = AgU{(had, OBJ, effect)})
A7)

30

had .

Transition Configuration

([rooT], [Economic, ...,.], @)
SH = ([rooT, Economic], [news, ...,], 7))
LA rr = ([rooT], [news, ..., .], Ay = {(news, ATT, Economic)})
SH = ([rooT, news], [had, ...,], Aq)
LAsg; = ([roOT], [had, ...,], A> = Ay1U{(had, SBJ, news)})
SH = ([roor, had], [little, ..., .], Ar)
SH = ([roor, had, little], [effect, ...,], Ar)
LA, rr = ([rooT, had], [effect, ...,], Az = ArU{(effect, ATT, little)})
SH = ([roor, had, effect], [on,...,.], Az)
SH = ([roor, ...on], [financial, markets, .], A3)
SH = ([roor, ..., financial], [markets, .], Az)
LA+t = ([rooT, ...on], [markets, .], Ay = A3U{(markets, ATT, financial)})
RA;c = ([roor, had, effect], [on, .], As = A4U{(on, PC, markets)})
RA rtr = ([roorT, had], [effect, .], Ag = AsU{(effect, ATT, on)})
RAog; = ([roOT], [had, .], A7 = AgU{(had, OB]J, effect)})
SH = ([roor, had], [], A7)
RApy = ([roOT], [had], Ag = A7U{(had, PU, .)})

CS447 Natural Language Processing 31

had

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],
SH = ([roor, had], [little, ..., .],
SH = ([roor, had, little], [effect, ...,],
LA, rr = ([rooT, had], [effect, ...,],
SH = ([roor, had, effect], [on,...,.],
SH = ([roor, ...on], [financial, markets, .],
SH = ([roor, ..., financial], [markets, .],
LA rr = ([rOOT, ...on], [markets, .],
RA;c = ([roor, had, effect], [on, .],
RArt = ([rooT, had], [effect, .],
RAog; = ([roOT], [had,],
SH = ([roor, had], [],
RApy = ([rooOT], [had],
RAprep = ([], [ROOT],

CS447 Natural Language Processing

%)

%)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})
A3)

A3)

Az = ArU{(effect, ATT, little)})
A3)

A3)

A3)

Ay = A3U{(markets, ATT, financial)})
As = AgU{(on, PC, markets)})
Ag = AsU{(effect, AT'T, on)})
A7 = AgU{(had, OBJ, effect)})
A7)

Ag = A7U{(had, PU, .)})

Ag = AgU{(rooT, PRED, had)})

32

Economic news had little effect on financial markets .

Transition Configuration

([rooT], [Economic, ...,],
SH = ([rooT, Economic], [news,...,.],
LAt = ([rOOT], [news, ..., .],
SH = ([rooT, news], [had, ..., .],
LAsg; = ([roOT], [had, ..., .],
SH = ([roor, had], [little, ..., .],
SH = ([roor, had, little], [effect, ...,],
LA, rr = ([rooT, had], [effect, ...,],
SH = ([roor, had, effect], [on,...,.],
SH = ([roor, ...on], [financial, markets, .],
SH = ([roor, ..., financial], [markets, .],
LA rr = ([rOOT, ...on], [markets, .],
RA;c = ([roor, had, effect], [on, .],
RArt = ([rooT, had], [effect, .],
RAog; = ([roOT], [had,],
SH = ([roor, had], [],
RApy = ([rooOT], [had],
RAprep = ([], [ROOT],
SH = ([roor], [,

CS447 Natural Language Processing

%)

%)

Ay = {(news, ATT, Economic)})
Ay)

A> = Ay1U{(had, SBJ, news)})
Aj)

Aj)

Az = ArU{(effect, ATT, little)})
A3)

A3)

A3)

Ay = A3U{(markets, ATT, financial)})
As = AgU{(on, PC, markets)})
Ag = AsU{(effect, AT'T, on)})
A7 = AgU{(had, OBJ, effect)})
A7)

Ag = A7U{(had, PU,)})

Ag = AgU{(rooT, PRED, had)})
Ag)

33

Transition-based parsing in practice

Which action should the parser take under the current
configuration?

We also need a parsing model that assigns a score

to each possible action given a current configuration.

- Possible actions:
SHIFT, and for any relation r: LEFT-ARCy, or RIGHT-ARC;

- Possible features of the current configuration:
The top {1,2,3} words on the buffer and on the stack,
their POS tags, distances between the words, etc.

We can learn this model from a dependency
treebank.

CS447 Natural Language Processing 34

Expressive Grammars

CS447 Natural Language Processing

35

Why grammar?

Meaning
ﬂ representation

Surface Parsing Logical form:

string Grammar saw(Mary,John)
Mary saw John Pred-arg structure:
< Generation

PRED saw
AGENT Mary
PATIENT John

Dependency graph:
Saw

Malfy/\fohn

CS447 Natural Language Processing 36

Grammar formalisms

Formalisms provide a language in which linguistic
theories can be expressed and implemented

Formalisms define elementary objects
(trees, strings, feature structures)

and recursive operations which generate
complex objects from simple objects.

Formalisms may impose constraints
(e.g. on the kinds of dependencies they can

capture)

CS447 Natural Language Processing 37

How do grammar formalisms differ?

Formalisms define different representations
Tree-adjoining Grammar (TAG):
Fragments of phrase-structure trees
Lexical-functional Grammar (LFG):

Annotated phrase-structure trees (c-structure)
linked to feature structures (f-structure)

Combinatory Categorial Grammar (CCG):

Syntactic categories paired with meaning representations
Head-Driven Phrase Structure Grammar(HPSG):

Complex feature structures (Attribute-value matrices)

CS447 Natural Language Processing 38

The dependencies so far:

Arguments:

Verbs take arguments: subject, object, complements, ...
Heads subcategorize for their arguments

Adjuncts/Modifiers:

Adjectives modify nouns, adverbs modify VPs or adjectives,
PPs modify NPs or VPs
Modifiers subcategorize for the head

Typically, these are local dependencies: they can be
expressed within individual CFG rules

¥ Y ¥
VP — Adv Verb NP

CS447 Natural Language Processing

39

Context-free grammars

CFGs capture only nested dependencies

The dependency graph is a tree
The dependencies do not cross

" iﬁ

CS447 Natural Language Processing

Beyond CFGs: Nonprojective dependencies

Dependencies form a tree with crossing branches

N

CS447 Natural Language Processing 41

Non-projective dependencies

(Non-local) scrambling: In a sentence with multiple verbs, the
argument of a verb appears in a different clause from that which
contains the verb (arises in languages with freer word order than
English)

Die Pizza hat Klaus versprochen zu bringen

The pizza has Klaus promised to bring
Klaus has promised to bring the pizza

Extraposition: Here, a modifier of the subject NP is moved to the
end of the sentence

The guy is coming who is wearing a hat
Compare with the non-extraposed variant
The [quy [who is wearing a hat]] is coming

Topicalization: Here, the argument of the embedded verb is moved
to the front of the sentence.

Cheeseburgers, | [thought [he likes]]

CS447 Natural Language Processing 42

Beyond CFGs:
Nonlocal dependencies

Dependencies form a DAG

(a node may have multiple incoming edges)

Arise in the following constructions:

- Control (He has promised me to go), raising (He seems to go)
- Wh-movement (the man who you saw yesterday is here again),

- Non-constituent coordination
(right-node raising, gapping, argument-cluster coordination)

[)

CS447 Natural Language Processing

43

Dependency structures

Nested (projective)
dependency trees
(CFGs)

Non-projective
dependency trees

Non-local dependency
graphs

CS447 Natural Language Processing

)
A N

AN

44

Non-local
dependencies

CS447 Natural Language Processing

45

Long-range dependencies

Bounded long-range dependencies:
Limited distance between the head and argument

Unbounded Iong-range dependencies:
Arbitrary distance (within the same sentence)
between the head and argument

Unbounded long-range dependencies cannot (in
general) be represented with CFGs.

Chomsky’s solution:
Add null elements (and co-indexation)

CS447 Natural Language Processing

46

Unbounded nonlocal dependencies

Wh-questions and relative clauses contain
unbounded nonlocal dependencies, where the
missing NP may be arbitrarily deeply embedded:

‘the sushi that [you told me [John saw [Mary eat]]]’

‘what [did you tell me [John saw [Mary eal]]]?’

Linguists call this phenomenon wh-extraction
(wh-movement).

CS447 Natural Language Processing 47

Non-local dependencies
In wh-extraction

NP
AN
NP SBAR
T~ /\
the sushi Ill\l /S\
that \p VP
=
you V NP S
| PAN PN
told me NP VP
AN
John \ll S
saw NP VP
AN
Mary Y

eat

CS447 Natural Language Processing 48

The trace analysis of

wh-extraction
NP
AN
NP SBAR
T~ /\
the sushi Ill\l /S\
that np VP
PN
~ you V NP S
RPN N
%, told me NP VP
John \ll S
saw NP VP
‘e, Mary V

CS447 Natural Language Processing

L J
L J
....
IIIIIIIII

trace

49

Slash categories for wh-extraction

Because only one element can be extracted, we can use
slash categories.

This is still a CFG: the set of nonterminals is finite.
Pl
NP SBA
/\
the sushi IN S/NP

that N\p VP/NP
=
vou V NP S/NP
| PaN)\

told me NP VP/NP
YA

John Y S/ﬂ,(

saw NP VP/NP
XV

Generalized Phrase Structure Grammar Mary \{
(GPSG), Gazdar et al. (1985) eat

CS447 Natural Language Processing

German: center embedding

...daB ich [Hans schwimmen] sah
..thatl Hans swim saw
...that | saw [Hans swim]

...daB3 ich [Maria [Hans schwimmen] helfen] sah
..thatl Maria Hans swim help saw
...that | saw [Mary help [Hans swim]]

7

...daB ich [Anna [Maria [Hans schwimmen] helfen] lassen] sah
..thatl Anna Maria Hans swim help let saw
...that | saw [Anna let [Mary help [Hans swim]]]

CS447 Natural Language Processing 51

Dutch: cross-serial dependencies

...dat ik Hans zag zwemmen
...that| Hans saw swim
...that | saw [Hans swim]

...dat ik Maria Hans zag helpen zwemmen
...that | Maria Hans saw help swim
...that | saw [Mary help [Hans swim]]

P P —

...dat ik Anna Maria Hans zag laten helpen zwemmen
...thatl Anna Maria Hans saw let help swim
...that | saw [Anna let [Mary help [Hans swim]|]

Such cross-serial dependencies require
mildly context-sensitive grammars

CS447 Natural Language Processing

52

Two mildly
context-sensitive
formalisms:

TAG and CCG

CS447 Natural Language Processing

53

The Chomsky Hierarchy

CS447 Natural Language Processing

54

Mildly context-sensitive grammars

Contain all context-free grammars/languages

Can be parsed in polynomial time (TAG/CCG: O(n®))

(Strong generative capacity) capture certain kinds of
dependencies: nested (like CFGs) and cross-serial (like the

Dutch example), but not the MIX language:
MIX: the set of strings w € {qa, b, c}* that contain equal numbers of as, bs and cs

Have the constant growth property:

the length of strings grows in a linear way

The power-of-2 language {a?"} does not have the constant
growth propery.

CS447 Natural Language Processing 55

TAG and CCG are
lexicalized formalisms

The lexicon:
- pairs words with elementary objects

- specifies all language-specific information
(e.g. subcategorization information)

The grammatical operations:
-are universal

-define (and impose constraints on) recursion.

CS447 Natural Language Processing

56

A (C)CG derivation

John eats tapas
NP (S\NP)/NP NP
~ S\NP

S <

CCG categories are defined recursively:

- Categories are atomic (S, NP) or complex (S\NP, (S\NP)/NP)

- Complex categories (X/Y or X\Y) are functions:

X/Y combines with an adjacent argument to its right of category Y to return a
result of category X.

Function categories can be composed, giving more
expressive power than CFGs
More on CCG in one of our Semantics lectures!

CS447 Natural Language Processing 57

Tree-Adjoining Grammar

CS447 Natural Language Processing

58

(Lexicalized) Tree-Adjoining Grammar

TAG is a tree-rewriting formalism:
TAG defines operations (substitution, adjunction) on trees.
The elementary objects in TAG are trees (not strings)

TAG is lexicalized:
Each elementary tree is anchored to a lexical item (word)

“Extended domain of locality”:
The elementary tree contains all arguments of the anchor.

TAG requires a linguistic theory which specifies the shape
of these elementary trees.

TAG is mildly context-sensitive:

can capture Dutch cross-serial dependencies AK Joshi and Y Schabes (1996)
. . . . Tree Adjoining Grammars.

but IS Stl” effICIently parseable In G. Rosenberg and A. Sa|omaa,
Eds., Handbook of Formal

CS447 Natural Language Processing Languages9

Extended domain of locality

We want to capture all arguments of a word
in a single elementary object.

We also want to retain certain syntactic structures
(e.g. VPs).

Our elementary objects are tree fragments:

PN
NP VP
PAMEN
VEZ WP
eats

CS447 Natural Language Processing 60

TAG substitution (arguments)

Derived tree:

Derivation tree: ol

MA o@A

CS447 Natural Language Processing

61

TAG adjunction

B1: : _
Auxiliary X Derived tree:
tree
ol oot node

ADJOIN

Derivation tree: ¢!
Bl

CS447 Natural Language Processing 62

The effect of adjunction

TIG: TAG:
sister wrapping
adjunction adjunction

No adjunction: TSG (Tree substitution grammar)
TSG is context-free

Sister adjunction: TIG (Tree insertion grammar)

TIG is also context-free, but has a linguistically more adequate
treatment of modifiers

Wrapping adjunction: TAG (Tree-adjoining grammar)
TAG is mildy context-sensitive

CS447 Natural Language Processing 63

A small TAG lexicon

o2:
NP
| .
John al:
S
N
NP VP
RN
VBZ NP
o3: |
eats
NP
tapas

CS447 Natural Language Processing

B1:
P
RB VP*

always

64

A TAG derivation

ol

S
/\ NP/ \VP

o2 o3 PN
VBZ NP

eats

1:

B1:
o2: VP o3:

e
NP RB VP* NP

John always tapas

CS447 Natural Language Processing 65

A TAG derivation

ol

; S
/ \ NE VP

a2 Pl o3 | v
John V|BZ

eats

31

/VP

FTB

always

CS447 Natural Language Processing

N
NP

tapas

N
VP*

66

A TAG derivation

/S

Il\IP

v

AN
VP

John RB

always

CS447 Natural Language Processing

e
VIIBZ

eats

™\

VP~*
N
NP

tapas

67

anpn: Cross-serial dependencies

S
Elementary trees: /? /1
a’ S a S
\ R
b S* b
Deriving aabb
S S
I
/ ? a/s a8
I
a S | > a/S
\, N\
S S*\b
Ny b

CS447 Natural Language Processing 68

Feature Structure
Grammars

CS447 Natural Language Processing

69

Simple grammars overgenerate

S
VP
NP

Det
Verb

Noun

bbbl

NP VP
Verb NP
Det Noun
the | a | these
eat |eats

cake |cakes | student | students

This generates ungrammatical sentences like
“these student eats a cakes”

We need to capture (number/person) agreement

CS447 Natural Language Processing 70

Refining the nonterminals

S — NPsg VPsg

S — NPpl VPpl
VPsg — VerbSg NP
VPpl — VerbPl NP
NPsg — DetSg NounSg
DetSg — the|a

This yields very large grammars.
What about person, case, ...?

Difficult to capture generalizations.
Subject and verb have to have number agreement
NPsg, NPpl and NP are three distinct nonterminals

CS447 Natural Language Processing

71

Feature structures

Replace atomic categories with feature structures:

cAT NP CAT VP
NUM SG NUM SG
PERS 3 PERS 3

| CASE NOM | | VFORM FINITE_

A feature structure is a list of features (= attributes),
e.g. CASE, and values (eg NOM).

We often represent feature structures as
attribute value matrices (AVM)

Usually, values are typed (to avoid CASE:SG)

CS447 Natural Language Processing 72

Feature structures
as directed graphs

‘cAaT NP | PERS

NUM SG = >3
o = NP CASE NUM
PERS 3
CASE NOM Nom Sg

CS447 Natural Language Processing 73

Complex feature structures

We distinguish between atomic and complex

feature values.

A complex value is a feature structure itself.

This allows us to capture better generalizations.

Only atomic values:

cAT NP |
NUM SG
PERS 3
| CASE NOM |

CS447 Natural Language Processing

Complex values:
NP

CAT

AGR

NUM
PERS
CASE

SG

NOM

74

Feature paths

/lcar NP

n = <2 _ i AR
b - e i —

A feature path allows us to identify
particular values in a feature structure:

(NP CAT) = NP
(NP AGR CASE) = NOM

CS447 Natural Language Processing

75

Unification

Two feature structures A and B unify (A u B)
if they can be merged into one consistent feature

structure C:

(CAT NP |
NUM sG |U
CASE NoMm| L

Otherwise. unification fails:

CAT NP
NUM SG
CASE NOM

CS447 Natural Language Processing

L

CAT

NP
PERS 3

CAT
NUM

NP
PL

(CAT
NUM
PERS

CASE

NP
SG

NOM

76

PATR-II style
feature structures

CFG rules are augmented with constraints:
A() —> Al eoe An

{set of constraints}

There are two kinds of constraints:
Unification constraints:
(Aj feature-path) = (A;j feature-path)

Value constraints:
(Ajfeature-path) = atomic value

CS447 Natural Language Processing 77

A grammar with feature structures

S — NP VP Grammar rule
gll: ngg : f/l‘;}z NUM) Constraints

NP — DT NOUN Grammar rule
NPCASH - (NOUNCasg) Constraints

NOUN — cake Lexical entry
(NOUN NUM) = sg

Constraints

CS447 Natural Language Processing 78

With complex feature structures

S — NP VP Grammar rule
(NP AGR) = (VP AGR) -
NP — DT NOUN Grammar rule
NP AGR = (NOUN AGR
<) <) Constraints
NOUN — cake Lexical entry
(NOUNAGRNUM) = 4
Constraints

Complex feature structures capture better
generalizations (and hence require fewer

constraints) — cf. the previous slide

CS447 Natural Language Processing 79

Attribute-Value Grammars
and CFGs

If every feature can only have a finite set of values,
any attribute-value grammar can be compiled out
into a (possibly huge) context-free grammar

CS447 Natural Language Processing 80

Going beyond CFGs

The power-of-2 language: L, = {wiliis a power of 2}

Lo is a (fully) context-sensitive language.
(Mildly context-sensitive languages have the constant growth
property (the length of words always increases by a constant factor c))

Here is a feature grammar which generates Lo:

A— a
(AF)=1
A— A1 A
(A F) = (A1)
(A F)=(Az)

CS447 Natural Language Processing 81

Today’s key concepts

Transition-based dependency parsing
for projective dependency trees

Going beyond projective dependencies:

non-projective dependencies
non-local dependencies

Expressive Grammars
TAG
CCG
Feature-Structure Grammars

CS447 Natural Language Processing

82

