CS447: Natural Language Processing

http://courses.engr.illinois.edu/cs447

Lecture 11: Penn Treebank Parsing; Dependency Grammars

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

Class Admin

CS447 Natural Language Processing

Midterm Exam: Friday, Oct 12

The midterm will be during class.

Closed book exam:

You are not allowed to use any cheat sheets, computers, calculators, phones etc.(you shouldn't have to anyway)

The exam will cover the material from the lectures

Format: Short answer questions

Review session: Wednesday, Oct 10 in class.

Review the material *before* that class, so that we can clear up any confusions

Conflict Exam or DRES accommodations:

Email me (juliahmr@illinois.edu) asap

Exam Question types

Define X:

Provide a mathematical/formal definition of X

Explain X; Explain what X is/does:

Use plain English to define X and say what X is/does

Compute X:

Return X; Show the steps required to calculate it

Draw X:

3

Draw a figure of X

Show that X is true/is the case/...:

This may require a (typically very simple) proof.

Discuss/Argue whether ...

Use your knowledge (of X,Y,Z) to argue your point

CS447: Natural Language Processing (J. Hockenmaier)

CS447 Natural Language Processing

4th Credit Hour

Either a **research project** (alone or with one other student) or a **literature survey** (alone)

Upcoming deadlines:

Fri, Oct 19: Proposal due

Fri, **Nov 9**: Progress report due (Is your paper on track?) **Thu**, **Dec 13**: Final report due (Summary of papers)

Good places to find NLP papers:

- ACL anthology http://aclweb.org/anthology covers almost everything published in NLP
- **JNLE** http://journals.cambridge.org/action/displayJournal?jid=NLE is another big NLP journal that is not part of the ACL
- Standard machine learning/Al conferences (NIPS, ICML, IJCAI, AAAI) and journals (JMLR, JAIR etc.) are okay as well.
- -Other venues: check with me that this is actually NLP

CS447: Natural Language Processing (J. Hockenmaier)

5

4th Credit hour: Proposal

Upload a **one-page PDF** to Compass by Oct 19

- -written in LaTeX (not MS Word)
- with full bibliography of the papers you want to read or base your project on (ideally with links to online versions; add url-field to your bibtex file)
- -include a **motivation** of why you have chosen those papers
- -for a research project: tell me whether you have the **data** you need, what **existing software** you will be using, what you will have to **implement yourself.**
- -mention any questions/concerns that you may have.

CS447: Natural Language Processing (J. Hockenmaier)

6

Today's lecture

Penn Treebank Parsing

Dependency Grammars Dependency Treebanks Dependency Parsing

Penn Treebank Parsing

The Penn Treebank

The first publicly available syntactically annotated corpus

Wall Street Journal (50,000 sentences, 1 million words) also Switchboard, Brown corpus, ATIS

The annotation:

- POS-tagged (Ratnaparkhi's MXPOST)
- Manually annotated with phrase-structure trees
- Richer than standard CFG: Traces and other null elements used to represent non-local dependencies (designed to allow extraction of predicate-argument structure) [more on this later in the semester]

Standard data set for English parsers

CS447 Natural Language Processing

ç

11

The Treebank label set

48 preterminals (tags):

- 36 POS tags, 12 other symbols (punctuation etc.)
- Simplified version of Brown tagset (87 tags)
 (cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags)

14 nonterminals:

standard inventory (S, NP, VP,...)

CS447 Natural Language Processing

10

A simple example

Relatively flat structures:

- There is no noun level
- VP arguments and adjuncts appear at the same level

Function tags, e.g. -SBJ (subject), -MNR (manner)

A more realistic (partial) example

Until Congress acts, the government hasn't any authority to issue new debt obligations of any kind, the Treasury said

CS447 Natural Language Processing

The Penn Treebank CFG

The Penn Treebank uses very flat rules, e.g.:

```
NP → DT JJ NN
NP → DT JJ NNS
NP → DT JJ NNS
NP → DT JJ NN NN
NP → DT JJ JN NN
NP → DT JJ CD NNS
NP → RB DT JJ NN NN
NP → RB DT JJ NN NN
NP → RB DT JJ JNNS
NP → DT NNP NNP NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT JJ NNP CC JJ JJ NN NNS
NP → DT JJ NNP CC JJ JJ NN NNS
NP → RB DT JJS NN NN SBAR
NP → DT VBG JJ NNP NNP CC NNP
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN
NP → DT JJ JJ VBG NN NNP NNP NNP
NP → NP JJ , JJ '' SBAR '' NNS
```

- Many of these rules appear only once.
- Many of these rules are very similar.
- Can we pool these counts?

CS447 Natural Language Processing

13

15

Two ways to improve performance

... change the (internal) grammar:

Parent annotation/state splits:
 Not all NPs/VPs/DTs/... are the same.
 It matters where they are in the tree

... change the probability model:

- Lexicalization:

Words matter!

- Markovization:

Generalizing the rules

PCFGs in practice:

Charniak (1996) Tree-bank grammars

How well do PCFGs work on the Penn Treebank?

- Split Treebank into test set (30K words) and training set (300K words).
- Estimate a PCFG from training set.
- Parse test set (with correct POS tags).
- Evaluate unlabeled precision and recall

Sentence	Average		
Lengths	Length	Precision	Recall
2-12	8.7	88.6	91.7
2-16	11.4	85.0	87.7
2-20	13.8	83.5	86.2
2-25	16.3	82.0	84.0
2-30	18.7	80.6	82.5
2-40	21.9	78.8	80.4

CS447 Natural Language Processing

14

The parent transformation

PCFGs assume the expansion of any nonterminal is independent of its parent.

But this is not true: NP subjects more likely to be modified than objects.

We can change the grammar by adding the name of the parent node to each nonterminal

Markov PCFGs (Collins parser)

The RHS of each CFG rule consists of: one head H_X , n left sisters L_i and m right sisters R_i :

$$X \to \underbrace{L_n...L_1}_{\text{left sisters}} H_X \underbrace{R_1...R_m}_{\text{right sisters}}$$

Replace rule probabilities with a generative process: For each nonterminal X

- generate its head H_X (nonterminal or terminal)
- then generate its left sisters $L_{1..n}$ and a STOP symbol conditioned on H_{X}
- then generate its right sisters $R_{1\dots n}$ and a STOP symbol conditioned on H_X

CS447 Natural Language Processing

17

19

Lexicalization

PCFGs can't distinguish between "eat sushi with chopsticks" and "eat sushi with tuna".

We need to take words into account!

$$\begin{split} &P(VP_{eat} \rightarrow VP \; PP_{with \; chopsticks} \; | \; VP_{eat} \,) \\ &\text{vs. } P(VP_{eat} \rightarrow VP \; PP_{with \; tuna} \; | \; VP_{eat} \,) \end{split}$$

Problem: sparse data (PPwith fattylwhitel... tuna....)
Solution: only take **head words** into account!

Assumption: each constituent has one head word.

CS447 Natural Language Processing

18

Lexicalized PCFGs

At the root (start symbol S), generate the head word of the sentence, w_s , with $P(w_s)$

Lexicalized rule probabilities:

Every nonterminal is lexicalized: X_{wx} Condition rules $X_{wx} \rightarrow \alpha Y \beta$ on the lexicalized LHS X_{wx} $P(\ X_{wx} \rightarrow \alpha Y \beta \mid X_{wx})$

Word-word dependencies:

For each nonterminal Y in RHS of a rule $X_{w_x} \to \alpha Y \beta$, condition w_y (the head word of Y) on X and w_x : $P(w_Y | Y, X, w_X)$

Dealing with unknown words

A lexicalized PCFG assigns zero probability to any word that does not appear in the training data.

Solution:

Training: Replace rare words in training data with a token 'UNKNOWN'.

Testing: Replace unseen words with 'UNKNOWN'

Refining the set of categories

Unlexicalized Parsing (Klein & Manning '03)

Unlexicalized PCFGs with various transformations of the training data and the model, e.g.:

- Parent annotation (of terminals and nonterminals): distinguish preposition IN from subordinating conjunction IN etc.
- Add head tag to nonterminals (e.g. distinguish finite from infinite VPs)
- Add distance features

Accuracy: 86.3 Precision and 85.1 Recall

The Berkeley parser (Petrov et al. '06, '07)

Automatically learns refinements of the nonterminals Accuracy: 90.2 Precision, 89.9 Recall

CS447 Natural Language Processing

21

23

Summary

The Penn Treebank has a large number of very flat rules.

Accurate parsing requires modifications to the basic PCFG model: refining the nonterminals, relaxing the independence assumptions by including grandparent information, modeling word-word dependencies, etc.

How much of this transfers to other treebanks or languages?

CS447: Natural Language Processing (J. Hockenmaier)

Dependency Grammar

A dependency parse

Dependencies are (labeled) asymmetrical binary relations between two lexical items (words).

Dependency grammar

Word-word dependencies are a component of many (most/all?) grammar formalisms.

Dependency grammar assumes that syntactic structure consists *only* of dependencies.

Many variants. Modern DG began with Tesniere (1959).

DG is often used for free word order languages.

DG is **purely descriptive** (not a generative system like CFGs etc.), but some formal equivalences are known.

CS447 Natural Language Processing

25

Different kinds of dependencies

Head-argument: eat sushi

Arguments may be obligatory, but can only occur once. The head alone cannot necessarily replace the construction.

Head-modifier: fresh sushi

Modifiers are optional, and can occur more than once. The head alone can replace the entire construction.

Head-specifier: the sushi

Between function words (e.g. prepositions, determiners) and their arguments. Syntactic head ≠ semantic head

Coordination: sushi and sashimi

Unclear where the head is.

CS447 Natural Language Processing

26

Dependency structures

Dependencies form a graph over the words in a sentence.

This graph is **connected** (every word is a node) and (typically) **acyclic** (no loops).

Single-head constraint:

Every node has at most one incoming edge. This implies that the graph is a **rooted tree**.

From CFGs to dependencies

Assume each CFG rule has **one head child** (bolded) The other children are **dependents** of the head.

S \rightarrow NP **VP VP** is head, NP is a dependent VP \rightarrow **V** NP NP \rightarrow DT **NOUN** NOUN \rightarrow ADJ **N**

The **headword** of a constituent is the terminal that is reached by recursively following the head child.

(here, V is the head word of S, and N is the head word of NP). If in rule $XP \rightarrow XY$, X is head child and Y dependent, the headword of Y depends on the headword of X.

The **maximal projection** of a terminal w is the highest nonterminal in the tree that w is headword of.

Here, Y is a maximal projection.

Context-free grammars

CFGs capture only **nested** dependencies

The dependency graph is a tree

The dependencies do not cross

CS447 Natural Language Processing

29

Beyond CFGs: Nonprojective dependencies

Dependencies: tree with crossing branches

Arise in the following constructions

- (Non-local) **scrambling** (free word order languages)

 Die Pizza hat Klaus versprochen zu bringen
- Extraposition (The guy is coming who is wearing a hat)
- Topicalization (Cheeseburgers, I thought he likes)

CS447 Natural Language Processing

30

Dependency Treebanks

Dependency treebanks exist for many languages:

Czech

Arabic

Turkish

Danish

Portuguese

Estonian

...

Phrase-structure treebanks (e.g. the Penn Treebank) can also be translated into dependency trees (although there might be noise in the translation)

The Prague Dependency Treebank

Three levels of annotation:

morphological: [<2M tokens]

Lemma (dictionary form) + detailed analysis (15 categories with many possible values = 4,257 tags)

surface-syntactic ("analytical"): [1.5M tokens]
Labeled dependency tree encoding grammatical functions
(subject, object, conjunct, etc.)

semantic ("tectogrammatical"): [0.8M tokens] Labeled dependency tree for predicate-argument structure, information structure, coreference (not all words included) (39 labels: agent, patient, origin, effect, manner, etc....)

Examples: analytical level

CS447 Natural Language Processing

33

METU-Sabanci Turkish Treebank

Turkish is an agglutinative language with free word order.

Rich morphological annotations

Dependencies (next slide) are at the morpheme level

- iyileştiriliyorken
 - · (literally) while it is being caused to become good
- while it is being improved
- iyi+Adj ^DB+Verb+Become^DB+Verb+Caus

^DB+Verb+Pass+Pos+Pres^DB+Adverb+While

Very small -- about 5000 sentences

CS447 Natural Language Processing

21

METU-Sabanci Turkish Treebank

[this and prev. example from Kemal Oflazer's talk at Rochester, April 2007]

CS447 Natural Language Processing

2007] 35

Universal Dependencies

37 syntactic relations, intended to be applicable to all languages ("universal"), with slight modifications for each specific language, if necessary.

http://universaldependencies.org

CS447 Natural Language Processing

Universal Dependency Relations

Nominal core arguments: nsubj (nominal subject), obj (direct object), iobj (indirect object)

Clausal core arguments: csubj (clausal subject), ccomp (clausal object ["complement"])

Non-core dependents: advcl (adverbial clause modifier), aux (auxiliary verb),

Nominal dependents: nmod (nominal modifier), amod (adjectival modifier),

Coordination: cc (coordinating conjunction), conj (conjunct)

and many more...

CS447 Natural Language Processing

37

Transition-based parsing (Nivre et al.)

Parsing algorithms for DG

'Transition-based' parsers:

learn a sequence of actions to parse sentences

Models:

State = stack of partially processed items

- + queue/buffer of remaining tokens
- + set of dependency arcs that have been found already

Transitions (actions) = add dependency arcs; stack/queue operations

'Graph-based' parsers:

learn a model over dependency graphs

Models:

a function (typically sum) of local attachment scores

For dependency trees, you can use a minimum spanning tree algorithm

CS447 Natural Language Processing

38

Transition-based parsing: assumptions

This algorithm works for projective dependency trees. Dependency tree:

Each word has a single parent (Each word is a dependent of [is attached to] one other word)

Projective dependencies:

There are no crossing dependencies.

For any i, j, k with i < k < j: if there is a dependency between w_i and w_j , the parent of w_k is a word w_l between (possibly including) i and j: $i \le l \le j$, while any child w_m of w_k has to occur between (excluding) i and j: i < m < j

the parent of w_k : one of $w_i...w_j$

any child of w_k : $\frac{1}{W}$ one of $w_{i+1}...w_{j-1}$

Transition-based parsing

Transition-based shift-reduce parsing processes the sentence $S = w_0w_1...w_n$ from left to right. Unlike CKY, it constructs a **single tree**.

Notation:

w₀ is a special ROOT token.

 $V_S = \{w_0, w_1, ..., w_n\}$ is the vocabulary of the sentence R is a set of dependency relations

The parser uses three data structures:

 σ : a stack of partially processed words $W_i \in V_S$

 β : a buffer of remaining input words $W_i \in V_S$

A: a set of dependency arcs $(w_i, r, w_i) \in V_S \times R \times V_S$

CS447 Natural Language Processing

41

Parser configurations (σ, β, A)

The **stack** σ is a list of partially processed words

We push and pop words onto/off of σ .

 $\sigma | w : w$ is on top of the stack.

Words on the stack are not (yet) attached to any other words. Once we attach w, w can't be put back onto the stack again.

The **buffer** β is the remaining input words

We read words from β (left-to-right) and push them onto σ $\mathbf{w}|\beta$: \mathbf{w} is on top of the buffer.

The **set of arcs** A defines the current tree.

We can add new arcs to A by attaching the word on top of the stack to the word on top of the buffer, or vice versa.

CS447 Natural Language Processing

42

Parser configurations (σ, β, A)

We start in the initial configuration ($[w_0]$, $[w_1,...,w_n]$, $\{\}$)

(Root token, Input Sentence, Empty tree)

We can attach the first word (\mathbf{w}_1) to the root token $\mathbf{w}_0,$ or we can push \mathbf{w}_1 onto the stack.

 $(\mathbf{w}_0$ is the only token that can't get attached to any other word)

We want to end in the **terminal configuration** ([], [], A)

(Empty stack, Empty buffer, Complete tree)

Success!

We have read all of the input words (empty buffer) and have attached all input words to some other word (empty stack)

Transition-based parsing

We process the sentence $S = w_0w_1...w_n$ from left to right ("incremental parsing")

In the parser configuration ($\sigma | \mathbf{w_i}, \mathbf{w_j} | \beta, \mathbf{A}$):

- wi is on top of the stack. wi may have some children
- $\mathbf{w_i}$ is on top of the buffer. $\mathbf{w_i}$ may have some children
- $\mathbf{w_i}$ precedes $\mathbf{w_j}$ ($\mathbf{i} < \mathbf{j}$)

We have to either attach $\mathbf{w_i}$ to $\mathbf{w_j}$, attach $\mathbf{w_j}$ to $\mathbf{w_i}$, or decide that there is no dependency between $\mathbf{w_i}$ and $\mathbf{w_i}$

If we reach $(\sigma|w_i, w_j|\beta, A)$, all words w_k with i < k < j have already been attached to a parent w_m with $i \le m \le j$

CS447 Natural Language Processing 43 CS447 Natural Language Processing

Parser actions

 (σ, β, A) : Parser configuration with stack σ , buffer β , set of arcs A (w, r, w'): Dependency with head w, relation r and dependent w'

SHIFT: Push the next input word $\mathbf{w_i}$ from the buffer β onto the stack σ $(\sigma, \mathbf{w_i} | \beta, \mathbf{A}) \Rightarrow (\sigma | \mathbf{w_i}, \beta, \mathbf{A})$

LEFT-ARC_r ... $w_i ... w_j$... (dependent precedes the head) Attach dependent w_i (top of stack σ) to head w_j (top of buffer β) with relation r from w_j to w_i . Pop w_i off the stack.

$$(\sigma|\mathbf{w}_i, \mathbf{w}_j|\beta, A) \Rightarrow (\sigma, \mathbf{w}_j|\beta, A \cup \{(\mathbf{w}_j, r, \mathbf{w}_i)\})$$

RIGHT-ARC_r: ... $\mathbf{w_i}$... $\mathbf{w_j}$... (dependent follows the head)

Attach dependent $\mathbf{w_j}$ (top of buffer $\boldsymbol{\beta}$) to head $\mathbf{w_i}$ (top of stack $\boldsymbol{\sigma}$) with relation \mathbf{r} from $\mathbf{w_i}$ to $\mathbf{w_j}$. Move $\mathbf{w_i}$ back to the buffer $(\boldsymbol{\sigma}|\mathbf{w_i},\mathbf{w_j}|\boldsymbol{\beta},A) \Rightarrow (\boldsymbol{\sigma},\mathbf{w_i}|\boldsymbol{\beta},A \cup \{(\mathbf{w_i},\mathbf{r},\mathbf{w_j})\})$

CS447 Natural Language Processing

45

Economic news had little effect on financial markets.

An example sentence & parse

CS447 Natural Language Processing

46

Economic news had little effect on financial markets.

Transition Configuration

([ROOT], [Economic, ..., .], Ø)

Transition	Configuration		
	([ROOT],	[Economic,, .],	Ø)

Economic news had little effect on financial markets .

Transition	Configuration		
	([root],	[Economic, , .],	Ø)
	([root, Economic],	[news, , .],	Ø)

CS447 Natural Language Processing

49

51

CS447 Natural Language Processing

50

Economic news had little effect on financial markets.

Economic **news had** little effect on financial markets .

CS447 Natural Language Processing

CS447 Natural Language Processing

CS447 Natural Language Processing

53

55

Economic news **had little** effect on financial markets.

Transition	Configuration		
	([ROOT],	[Economic,, .],	Ø)
$SH \Rightarrow$	([root, Economic],	[news, , .],	Ø)
$\text{LA}_{\text{ATT}} \Rightarrow$	([ROOT],	[news, , .],	$A_1 = \{(\text{news, ATT, Economic})\}\)$
$SH \Rightarrow$	([ROOT, news],	[had, , .],	A_1)
$LA_{SBJ} \Rightarrow$	([ROOT],	[had, , .],	$A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})$
$SH \Rightarrow$	(Гкоот, had),	[little].	A_2)

CS447 Natural Language Processing

54

Economic news had little effect on financial markets.

```
Transition Configuration
             ([ROOT],
                                          [Economic, ..., .],
    SH \Rightarrow ([ROOT, Economic],
                                         [news, . . . , .],
                                                                     A_1 = \{(\text{news, ATT, Economic})\}\)
LA_{ATT} \Rightarrow ([ROOT],
                                          [news, ..., .],
    SH \Rightarrow ([ROOT, news],
                                          [had, ..., .],
                                                                     A_1
                                                                     A_2 = A_1 \cup \{(\text{had, SBJ, news})\})
 LA_{SBJ} \Rightarrow ([ROOT],
                                          [had, ..., .],
    SH \Rightarrow ([ROOT, had],
                                          [little, . . . , .],
                                                                     A_2)
    SH \Rightarrow ([ROOT, had, little],
                                                                     A_2)
                                         [effect, . . . , .],
```

Economic news had little effect on financial markets.

```
Transition Configuration
                                            [Economic, \dots, .],
              ([ROOT],
    SH \Rightarrow ([ROOT, Economic],
                                           [news, ..., .],
                                                                        A_1 = \{(\text{news, ATT, Economic})\}\)
LA_{ATT} \Rightarrow ([ROOT],
                                            [news, ..., .],
    SH \Rightarrow ([ROOT, news],
                                            [had, ..., .],
                                                                        A_1
                                            [had, . . . , .],
                                                                       A_2 = A_1 \cup \{(\text{had, SBJ, news})\})
 LA_{SBJ} \Rightarrow ([ROOT],
    SH \Rightarrow ([ROOT, had],
                                            [little, . . . , .],
                                                                       A_2)
    SH \Rightarrow ([ROOT, had, little],
                                           [effect, . . . , .],
                                                                        A_2)
                                                                        A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
LA_{ATT} \Rightarrow ([ROOT, had],
                                            [effect, . . . , .],
```

CS447 Natural Language Processing

CS447 Natural Language Processing

Transition Configuration ([ROOT], [Economic, \dots , .], $SH \Rightarrow ([ROOT, Economic],$ [news, ..., .], $LA_{ATT} \Rightarrow ([ROOT],$ $A_1 = \{(\text{news, ATT, Economic})\}\)$ [news,], $SH \Rightarrow ([ROOT, news],$ [had, ..., .], A_1 $A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})$ $LA_{SBJ} \Rightarrow ([ROOT],$ [had, ..., .], $SH \Rightarrow ([ROOT, had],$ [little, ..., .], A_2 $SH \Rightarrow ([ROOT, had, little],$ [effect, . . . , .], A_2) $LA_{ATT} \Rightarrow ([ROOT, had],$ [effect, \dots , .], $A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})$ $SH \Rightarrow ([ROOT, had, effect],$ [on, ..., .], A_3)

CS447 Natural Language Processing

57

59

Economic news had little effect on financial markets.

```
Transition Configuration
                                             [Economic, ..., .],
               ([ROOT],
     SH \Rightarrow ([ROOT, Economic],
                                                                          Ø)
                                             [news, ..., .],
LA_{ATT} \Rightarrow ([ROOT],
                                                                          A_1 = \{(\text{news, ATT, Economic})\}\)
                                             [news, . . . . ],
     SH \Rightarrow ([ROOT, news],
                                             [had, ..., .],
                                                                          A_1
 LA_{SRI} \Rightarrow ([ROOT],
                                             [had, ..., .],
                                                                          A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})
     SH \Rightarrow ([ROOT, had],
                                             [little, . . . , .],
                                                                          A_2)
     SH \Rightarrow ([ROOT, had, little],
                                             [effect, . . . , .],
                                                                          A_2)
LA_{ATT} \Rightarrow ([ROOT, had],
                                             [effect, . . . , .],
                                                                          A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
     SH \Rightarrow ([ROOT, had, effect],
                                             [on, \ldots, .],
     SH \Rightarrow ([ROOT, \dots on],
                                             [financial, markets, .], A_3)
     SH \Rightarrow ([ROOT, ..., financial], [markets, .],
```

Economic news had little effect on financial markets.

```
Transition Configuration
              ([ROOT],
                                           [Economic, \ldots, .],
    SH \Rightarrow ([ROOT, Economic],
                                           [news, ..., .],
                                                                        A_1 = \{(\text{news, ATT, Economic})\}\)
LA_{ATT} \Rightarrow ([ROOT],
                                           [news, . . . . ],
    SH \Rightarrow ([ROOT, news],
                                           [had, ..., .],
                                                                        A_1
                                           [had, ..., .],
                                                                        A_2 = A_1 \cup \{(\text{had, SBJ, news})\})
 LA_{SBJ} \Rightarrow ([ROOT],
    SH \Rightarrow ([ROOT, had],
                                           [little, . . . . ],
                                                                        A_2
    SH \Rightarrow ([ROOT, had, little],
                                           [effect, . . . , .],
                                                                        A_2)
LA_{ATT} \Rightarrow ([ROOT, had],
                                           [effect, . . . , .],
                                                                        A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
    SH \Rightarrow ([ROOT, had, effect],
                                           [on, . . . , .],
                                                                        A_3)
    SH \Rightarrow ([ROOT, \dots On],
                                           [financial, markets, .], A_3)
```

CS447 Natural Language Processing

58

Economic news had little effect on financial markets.

```
Transition Configuration
                                            [Economic, ..., .],
                                                                         Ø)
              ([ROOT],
    SH \Rightarrow ([ROOT, Economic],
                                            [news, ..., .],
LA_{ATT} \Rightarrow ([ROOT],
                                                                         A_1 = \{(\text{news, ATT, Economic})\}\)
                                            [news, . . . , .],
    SH \Rightarrow ([ROOT, news],
                                            [had, ..., .],
                                                                         A_1
 LA_{SBJ} \Rightarrow ([ROOT],
                                            [had, ..., .],
                                                                         A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})
    SH \Rightarrow ([ROOT, had],
                                            [little, . . . . ],
                                                                         A_2
    SH \Rightarrow ([ROOT, had, little],
                                            [effect, . . . , .],
                                                                         A_2)
LA_{ATT} \Rightarrow ([ROOT, had],
                                            [effect, . . . , .],
                                                                         A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
    SH \Rightarrow ([ROOT, had, effect],
                                            [on, \ldots, .],
                                                                         A_3)
    SH \Rightarrow ([ROOT, \dots on],
                                            [financial, markets, .], A_3)
    SH \Rightarrow ([ROOT, ..., financial], [markets, .],
                                                                         A_3
LA_{ATT} \Rightarrow ([ROOT, \dots On],
                                            [markets, .],
                                                                         A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})
```

CS447 Natural Language Processing

CS447 Natural Language Processing

Transition Configuration ([ROOT], [Economic, \ldots , .], $SH \Rightarrow ([ROOT, Economic],$ [news, ..., .], $LA_{ATT} \Rightarrow ([ROOT],$ $A_1 = \{(\text{news, ATT, Economic})\}\)$ [news,], $SH \Rightarrow ([ROOT, news],$ [had, . . . , .], A_1 $A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})$ $LA_{SBJ} \Rightarrow ([ROOT],$ [had, ..., .], $SH \Rightarrow ([ROOT, had],$ [little, . . . , .], A_2 $SH \Rightarrow ([ROOT, had, little],$ [effect, . . . , .], A_2) $LA_{ATT} \Rightarrow ([ROOT, had],$ [effect, . . . , .], $A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})$ [on, ..., .], $SH \Rightarrow ([ROOT, had, effect],$ $SH \Rightarrow ([ROOT, ... on],$ [financial, markets, .], A_3) $SH \Rightarrow ([ROOT, ..., financial], [markets, .],$ $LA_{ATT} \Rightarrow ([ROOT, \dots On],$ $A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})$ [markets, .], $RA_{PC} \Rightarrow ([ROOT, had, effect],$ $A_5 = A_4 \cup \{(\text{on, PC, markets})\})$ [on, .],

CS447 Natural Language Processing

61

Economic news **had** little **effect** on financial markets .

```
Transition Configuration
                                              [Economic, ..., .],
               ([ROOT],
     SH \Rightarrow ([ROOT, Economic],
                                              [news, ..., .],
LA_{ATT} \Rightarrow ([ROOT],
                                                                           A_1 = \{(\text{news, ATT, Economic})\}\)
                                              [news, . . . . ],
     SH \Rightarrow ([ROOT, news],
                                              [had, ..., .],
                                                                           A_1
 LA_{SRI} \Rightarrow ([ROOT],
                                              [had, ..., .],
                                                                           A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})
     SH \Rightarrow ([ROOT, had],
                                              [little, . . . . ],
                                                                           A_2)
     SH \Rightarrow ([ROOT, had, little],
                                              [effect, . . . , .],
                                                                           A_2)
LA_{ATT} \Rightarrow ([ROOT, had],
                                              [effect, . . . , .],
                                                                           A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
     SH \Rightarrow ([ROOT, had, effect],
                                              [on, \ldots, .],
     SH \Rightarrow ([ROOT, \dots on],
                                              [financial, markets, .], A_3)
     SH \Rightarrow ([ROOT, ..., financial], [markets, .],
                                                                           A_3
LA_{ATT} \Rightarrow ([ROOT, \dots On],
                                              [markets, .],
                                                                           A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})
  RA_{PC} \Rightarrow ([ROOT, had, effect],
                                              [on, .],
                                                                           A_5 = A_4 \cup \{(\text{on, PC, markets})\})
RA_{ATT} \Rightarrow ([ROOT, had],
                                              [effect, .],
                                                                           A_6 = A_5 \cup \{(\text{effect}, ATT, \text{on})\})
RA_{OBI} \Rightarrow ([ROOT],
                                              [had, .],
                                                                           A_7 = A_6 \cup \{(\text{had, OBJ, effect})\}\)
```

Economic news **had** little **effect on** financial markets .

Transition	Configuration		
	([ROOT],	[Economic,, .],	Ø)
$SH \Rightarrow$	([root, Economic],	[news, , .],	Ø)
$LA_{ATT} \Rightarrow$	([root],	[news, , .],	$A_1 = \{(\text{news}, \text{ATT}, \text{Economic})\})$
$SH \Rightarrow$	([ROOT, news],	[had, , .],	A_1)
$LA_{SBJ} \Rightarrow$	([root],	[had, , .],	$A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})$
$SH \Rightarrow$	([rooт, had],	[little, , .],	A_2)
$SH \Rightarrow$	([rooт, had, little],	[effect, , .],	A_2)
$LA_{ATT} \Rightarrow$	([root, had],	[effect, , .],	$A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})$
$SH \Rightarrow$	([ROOT, had, effect],	[on,, .],	A_3)
$SH \Rightarrow$	([ROOT, on],	[financial, markets, .],	A_3)
$SH \Rightarrow$	([ROOT,, financial],	[markets, .],	A_3)
$LA_{ATT} \Rightarrow$	([ROOT, on],	[markets, .],	$A_4 = A_3 \cup \{(\text{markets}, ATT, \text{financial})\})$
$RA_{PC} \Rightarrow$	([ROOT, had, effect],	[on, .],	$A_5 = A_4 \cup \{(\text{on, PC, markets})\}\)$
$RA_{ATT} \Rightarrow$	([rooт, had],	[effect, .],	$A_6 = A_5 \cup \{(\text{effect, ATT, on})\})$

CS447 Natural Language Processing

62

Economic news had little effect on financial markets.

```
Transition Configuration
                                             [Economic, .....],
               ([ROOT],
    SH \Rightarrow ([ROOT, Economic],
                                             [news, ..., .],
LA_{ATT} \Rightarrow ([ROOT],
                                                                          A_1 = \{(\text{news, ATT, Economic})\}\)
                                             [news, . . . . ],
    SH \Rightarrow ([ROOT, news],
                                             [had, ..., .],
                                                                          A_1
 LA_{SBI} \Rightarrow ([ROOT],
                                             [had, ..., .],
                                                                          A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})
    SH \Rightarrow ([ROOT, had],
                                             [little, . . . . ],
                                                                          A_2
    SH \Rightarrow ([ROOT, had, little],
                                             [effect, . . . , .],
                                                                          A_2)
LA_{ATT} \Rightarrow ([ROOT, had],
                                             [effect, . . . , .],
                                                                          A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
    SH \Rightarrow ([ROOT, had, effect],
                                             [on, \ldots, .],
    SH \Rightarrow ([ROOT, \dots on],
                                             [financial, markets, .], A_3)
    SH \Rightarrow ([ROOT, ..., financial], [markets, .],
                                                                          A_3)
LA_{ATT} \Rightarrow ([ROOT, \dots On],
                                             [markets, .],
                                                                          A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})
  RA_{PC} \Rightarrow ([ROOT, had, effect],
                                             [on, .],
                                                                          A_5 = A_4 \cup \{(\text{on, PC, markets})\}\)
RA_{ATT} \Rightarrow ([ROOT, had],
                                             [effect, .],
                                                                          A_6 = A_5 \cup \{(\text{effect}, ATT, \text{on})\})
 RA_{OBI} \Rightarrow ([ROOT],
                                             [had, .],
                                                                          A_7 = A_6 \cup \{(\text{had, OBJ, effect})\}\)
    SH \Rightarrow ([ROOT, had],
                                             [.],
                                                                          A_7)
```

CS447 Natural Language Processing

63

CS447 Natural Language Processing

```
Transition Configuration
               ([ROOT],
                                              [Economic, \dots, .],
    SH \Rightarrow ([ROOT, Economic],
                                             [news, ..., .],
LA_{ATT} \Rightarrow ([ROOT],
                                                                            A_1 = \{(\text{news, ATT, Economic})\}\)
                                              [news, . . . . ],
    SH \Rightarrow ([ROOT, news],
                                              [had, ..., .],
                                                                            A_1
                                              [had, ..., .],
                                                                            A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})
 LA_{SBJ} \Rightarrow ([ROOT],
    SH \Rightarrow ([ROOT, had],
                                              [little, . . . . ],
                                                                            A_2
    SH \Rightarrow ([ROOT, had, little],
                                             [effect, . . . , .],
                                                                            A_2)
LA_{ATT} \Rightarrow ([ROOT, had],
                                              [effect, . . . . .],
                                                                            A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
                                             [on, . . . , .],
    SH \Rightarrow ([ROOT, had, effect],
    SH \Rightarrow ([ROOT, \dots on],
                                              [financial, markets, .], A_3)
    SH \Rightarrow ([ROOT, ..., financial], [markets, .],
LA_{ATT} \Rightarrow ([ROOT, \dots on],
                                                                            A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})
                                              [markets, .],
 RA_{PC} \Rightarrow ([ROOT, had, effect],
                                             [on, .],
                                                                            A_5 = A_4 \cup \{(\text{on, PC, markets})\}\)
RA_{ATT} \Rightarrow ([ROOT, had],
                                              [effect, .],
                                                                            A_6 = A_5 \cup \{(\text{effect}, ATT, \text{on})\})
 RA_{OBI} \Rightarrow ([ROOT],
                                              [had, .],
                                                                            A_7 = A_6 \cup \{(\text{had}, \text{OBJ}, \text{effect})\})
    SH \Rightarrow ([ROOT, had],
                                              [.],
                                                                            A_7
 RA_{PU} \Rightarrow ([ROOT],
                                              [had],
                                                                            A_8 = A_7 \cup \{(had, PU, .)\})
```

CS447 Natural Language Processing

65

Economic news had little effect on financial markets.

```
Transition Configuration
                                              [Economic, .....],
               ([ROOT],
     SH \Rightarrow ([ROOT, Economic],
                                              [news, ..., .],
                                                                           A_1 = \{(\text{news, ATT, Economic})\}\)
 LA_{ATT} \Rightarrow ([ROOT],
                                              [news, . . . , .],
     SH \Rightarrow ([ROOT, news],
                                              [had, ..., .],
                                                                           A_1
  LA_{SRI} \Rightarrow ([ROOT],
                                              [had, ..., .],
                                                                           A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})
     SH \Rightarrow ([ROOT, had],
                                              [little, . . . . ],
                                                                           A_2)
     SH \Rightarrow ([ROOT, had, little],
                                              [effect, . . . , .],
LA_{ATT} \Rightarrow ([ROOT, had],
                                              [effect, . . . , .],
                                                                           A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})
     SH \Rightarrow ([ROOT, had, effect],
                                             [on, . . . , .],
     SH \Rightarrow ([ROOT, \dots on],
                                              [financial, markets, .], A_3)
     SH \Rightarrow ([ROOT, ..., financial], [markets, .],
                                                                           A_3
LA_{ATT} \Rightarrow ([ROOT, ...on],
                                              [markets, .],
                                                                           A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})
  RA_{PC} \Rightarrow ([ROOT, had, effect],
                                             [on, .],
                                                                           A_5 = A_4 \cup \{(\text{on, PC, markets})\})
 RA_{ATT} \Rightarrow ([ROOT, had],
                                              [effect, .],
                                                                           A_6 = A_5 \cup \{(\text{effect}, ATT, \text{on})\})
 RA_{OBI} \Rightarrow ([ROOT],
                                              [had, .],
                                                                           A_7 = A_6 \cup \{(\text{had}, \text{OBJ}, \text{effect})\})
     SH \Rightarrow ([ROOT, had],
                                              [.],
                                                                           A_7)
  RA_{PII} \Rightarrow ([ROOT],
                                                                           A_8 = A_7 \cup \{(had, PU, .)\})
                                              [had],
RA_{PRED} \Rightarrow ([],
                                              [ROOT],
                                                                           A_9 = A_8 \cup \{(ROOT, PRED, had)\})
     SH \Rightarrow ([ROOT],
                                              [],
```

Economic news **had** little effect on financial markets.

Transition	Configuration		
	([root],	[Economic,, .],	Ø)
$SH \Rightarrow$	([root, Economic],	[news, , .],	Ø)
$LA_{ATT} \Rightarrow$	([ROOT],	[news, , .],	$A_1 = \{(\text{news, ATT, Economic})\}\)$
$SH \Rightarrow$	([ROOT, news],	[had, , .],	A_1)
$LA_{SBJ} \Rightarrow$	([ROOT],	[had, , .],	$A_2 = A_1 \cup \{(\text{had}, \text{SBJ}, \text{news})\})$
$SH \Rightarrow$	([rooт, had],	[little, , .],	A_2)
$SH \Rightarrow$	([rooт, had, little],	[effect, , .],	A_2)
$LA_{ATT} \Rightarrow$	([rooт, had],	[effect, , .],	$A_3 = A_2 \cup \{(\text{effect}, ATT, \text{little})\})$
$SH \Rightarrow$	([rooт, had, effect],	[on,, .],	A_3)
$SH \Rightarrow$	([ROOT, on],	[financial, markets, .],	A_3)
$SH \Rightarrow$	([ROOT,, financial],	[markets, .],	A_3)
$LA_{ATT} \Rightarrow$	([ROOT, on],	[markets, .],	$A_4 = A_3 \cup \{(\text{markets, ATT, financial})\})$
$RA_{PC} \Rightarrow$	([rooт, had, effect],	[on, .],	$A_5 = A_4 \cup \{(\text{on, PC, markets})\})$
$RA_{ATT} \Rightarrow$	([rooт, had],	[effect, .],	$A_6 = A_5 \cup \{(\text{effect}, ATT, \text{on})\})$
$RA_{OBJ} \Rightarrow$	([root],	[had, .],	$A_7 = A_6 \cup \{(\text{had, OBJ, effect})\})$
$SH \Rightarrow$	([rooт, had],	[.],	$A_7)$
$RA_{PU} \Rightarrow$	([root],	[had],	$A_8 = A_7 \cup \{(\text{had}, \text{PU}, .)\})$
$RA_{\text{pred}} \Rightarrow$	([],	[ROOT],	$A_9 = A_8 \cup \{(\text{ROOT}, PRED, \text{had})\})$

CS447 Natural Language Processing

66

Transition-based parsing in practice

Which action should the parser take under the current configuration?

We also need a parsing model that assigns a score to each possible action given a current configuration.

- Possible actions: SHIFT, and for any relation r: LEFT-ARC_r, or RIGHT-ARC_r
- -Possible features of the current configuration: The top {1,2,3} words on the buffer and on the stack, their POS tags, etc.

We can learn this model from a dependency treebank.

CS447 Natural Language Processing

67

CS447 Natural Language Processing