
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 11:
Penn Treebank Parsing;
Dependency Grammars

CS447 Natural Language Processing

Class Admin

�2

CS447 Natural Language Processing

Midterm Exam: Friday, Oct 12
The midterm will be during class.
Closed book exam:

You are not allowed to use any cheat sheets, computers,
calculators, phones etc.(you shouldn’t have to anyway)
The exam will cover the material from the lectures

Format: Short answer questions

Review session: Wednesday, Oct 10 in class.
Review the material before that class,  
so that we can clear up any confusions

Conflict Exam or DRES accommodations:  
Email me (juliahmr@illinois.edu) asap

�3 CS447: Natural Language Processing (J. Hockenmaier)

Exam Question types
Define X: 
Provide a mathematical/formal definition of X
Explain X; Explain what X is/does:  
Use plain English to define X and say what X is/does
Compute X: 
Return X; Show the steps required to calculate it
Draw X: 
Draw a figure of X
Show that X is true/is the case/…:  
This may require a (typically very simple) proof.
Discuss/Argue whether …
Use your knowledge (of X,Y,Z) to argue your point

�4

CS447: Natural Language Processing (J. Hockenmaier)

4th Credit Hour
Either a research project (alone or with one other student) 
or a literature survey (alone) 

Upcoming deadlines:
Fri, Oct 19: Proposal due
Fri, Nov 9: Progress report due (Is your paper on track?)  
Thu, Dec 13: Final report due (Summary of papers)  

Good places to find NLP papers:
-ACL anthology http://aclweb.org/anthology  
covers almost everything published in NLP
-JNLE http://journals.cambridge.org/action/displayJournal?jid=NLE  
is another big NLP journal that is not part of the ACL
-Standard machine learning/AI conferences (NIPS, ICML, IJCAI, AAAI)  
and journals (JMLR, JAIR etc.) are okay as well.
-Other venues: check with me that this is actually NLP

�5 CS447: Natural Language Processing (J. Hockenmaier)

4th Credit hour: Proposal
Upload a one-page PDF to Compass by Oct 19
-written in LaTeX (not MS Word) 

-with full bibliography of the papers you want to read  
or base your project on

(ideally with links to online versions; add url-field to your bibtex file) 

- include a motivation of why you have chosen those papers 

- for a research project: tell me whether you have the data you
need, what existing software you will be using, what you will
have to implement yourself. 

-mention any questions/concerns that you may have.

�6

CS447 Natural Language Processing

Today’s lecture

Penn Treebank Parsing

Dependency Grammars
Dependency Treebanks
Dependency Parsing

�7 CS447: Natural Language Processing (J. Hockenmaier)

Penn Treebank
Parsing

�8

CS447 Natural Language Processing

The Penn Treebank
The first publicly available syntactically annotated
corpus

Wall Street Journal (50,000 sentences, 1 million words)
also Switchboard, Brown corpus, ATIS 

The annotation:
– POS-tagged (Ratnaparkhi’s MXPOST)
– Manually annotated with phrase-structure trees
– Richer than standard CFG: Traces and other null

elements used to represent non-local dependencies
(designed to allow extraction of predicate-argument
structure) [more on this later in the semester]  

Standard data set for English parsers
�9 CS447 Natural Language Processing

The Treebank label set
48 preterminals (tags):

– 36 POS tags, 12 other symbols (punctuation etc.)
– Simplified version of Brown tagset (87 tags)  

(cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags) 

14 nonterminals:
standard inventory (S, NP, VP,...)

�10

CS447 Natural Language Processing

A simple example

�11

Relatively flat structures:
– There is no noun level
– VP arguments and adjuncts appear at the same level  

Function tags, e.g. -SBJ (subject), -MNR (manner)

CS447 Natural Language Processing

A more realistic (partial) example
Until Congress acts, the government hasn't any authority to issue new debt
obligations of any kind, the Treasury said

�12

CS447 Natural Language Processing

The Penn Treebank CFG

The Penn Treebank uses very flat rules, e.g.: 
 
 
 
 
 
 
 

– Many of these rules appear only once.
– Many of these rules are very similar.
– Can we pool these counts?

�13 CS447 Natural Language Processing

PCFGs in practice:
Charniak (1996) Tree-bank grammars

How well do PCFGs work on the Penn Treebank?  

– Split Treebank into test set (30K words)  
and training set (300K words).

– Estimate a PCFG from training set.
– Parse test set (with correct POS tags).
– Evaluate unlabeled precision and recall

�14

CS447 Natural Language Processing

Two ways to improve performance
… change the (internal) grammar:
- Parent annotation/state splits:  

Not all NPs/VPs/DTs/… are the same. 
It matters where they are in the tree  

… change the probability model:
- Lexicalization:  

Words matter!
- Markovization:  

Generalizing the rules

�15 CS447 Natural Language Processing

PCFGs assume the expansion of any nonterminal
is independent of its parent.

But this is not true: NP subjects more likely to be modified
than objects.

We can change the grammar by adding the name
of the parent node to each nonterminal

The parent transformation

�16

CS447 Natural Language Processing

Markov PCFGs (Collins parser)
The RHS of each CFG rule consists of:  
one head HX, n left sisters Li and m right sisters Ri:  
 
 

Replace rule probabilities with a generative process: 
For each nonterminal X

-generate its head HX (nonterminal or terminal)
- then generate its left sisters L1..n and a STOP symbol  

conditioned on HX
- then generate its right sisters R1...n and a STOP symbol

conditioned on HX

X → Ln...L1
︸ ︷︷ ︸

left sisters

HX R1...Rm
︸ ︷︷ ︸

right sisters

�17 CS447 Natural Language Processing

Lexicalization
PCFGs can’t distinguish between  
“eat sushi with chopsticks” and “eat sushi with tuna”. 

We need to take words into account!
P(VPeat → VP PPwith chopsticks | VPeat)  
vs. P(VPeat → VP PPwith tuna | VPeat)

Problem: sparse data (PPwith fatty|white|... tuna....) 
Solution: only take head words into account!

Assumption: each constituent has one head word.

�18

CS447 Natural Language Processing

At the root (start symbol S), generate the head word of the
sentence, wS , with P(wS)  

Lexicalized rule probabilities:  
Every nonterminal is lexicalized: Xwx  

Condition rules Xwx → αYβ on the lexicalized LHS Xwx 

P(Xwx → αYβ | Xwx)  

Word-word dependencies:  
For each nonterminal Y in RHS of a rule Xwx → αYβ,  
condition wY (the head word of Y) on X and wX: 
P(wY | Y, X, wX)  

Lexicalized PCFGs

�19 CS447 Natural Language Processing

Dealing with unknown words
A lexicalized PCFG assigns zero probability  
to any word that does not appear in the training data.

Solution: 

Training: Replace rare words in training data  
with a token ‘UNKNOWN’.  

Testing: Replace unseen words with ‘UNKNOWN’

�20

CS447 Natural Language Processing

Refining the set of categories

Unlexicalized Parsing (Klein & Manning ’03)
Unlexicalized PCFGs with various transformations  
of the training data and the model, e.g.:
– Parent annotation (of terminals and nonterminals):
distinguish preposition IN from subordinating conjunction IN etc.
– Add head tag to nonterminals
(e.g. distinguish finite from infinite VPs)
– Add distance features
Accuracy: 86.3 Precision and 85.1 Recall

The Berkeley parser (Petrov et al. ’06, ’07)
Automatically learns refinements of the nonterminals
Accuracy: 90.2 Precision, 89.9 Recall

�21 CS447: Natural Language Processing (J. Hockenmaier)

Summary
The Penn Treebank has a large number of very flat
rules.
Accurate parsing requires modifications to the basic
PCFG model: refining the nonterminals, relaxing the
independence assumptions by including grandparent
information, modeling word-word dependencies, etc.

How much of this transfers to other treebanks or
languages?  

�22

CS447: Natural Language Processing (J. Hockenmaier)

Dependency
Grammar

�23 CS447 Natural Language Processing

A dependency parse

�24

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

Dependencies are (labeled) asymmetrical binary relations
between two lexical items (words). 

CS447 Natural Language Processing

Dependency grammar
Word-word dependencies are a component of
many (most/all?) grammar formalisms. 

Dependency grammar assumes that syntactic
structure consists only of dependencies.

Many variants. Modern DG began with Tesniere (1959). 

DG is often used for free word order languages. 

DG is purely descriptive (not a generative system
like CFGs etc.), but some formal equivalences are
known.

�25 CS447 Natural Language Processing

Head-argument: eat sushi  
Arguments may be obligatory, but can only occur once. 
The head alone cannot necessarily replace the construction. 

Head-modifier: fresh sushi  
Modifiers are optional, and can occur more than once. 
The head alone can replace the entire construction. 

Head-specifier: the sushi  
Between function words (e.g. prepositions, determiners) 
and their arguments. Syntactic head ≠ semantic head  

Coordination: sushi and sashimi  
Unclear where the head is.

Different kinds of dependencies

�26

CS447 Natural Language Processing

Dependency structures

Dependencies form a graph over the words in a
sentence. 

This graph is connected (every word is a node)  
and (typically) acyclic (no loops). 

Single-head constraint:  
Every node has at most one incoming edge.
This implies that the graph is a rooted tree. 

�27 CS447 Natural Language Processing

From CFGs to dependencies
Assume each CFG rule has one head child (bolded)
The other children are dependents of the head.

S → NP VP VP is head, NP is a dependent  
VP → V NP NP  
NP → DT NOUN  
NOUN → ADJ N

The headword of a constituent is the terminal that is
reached by recursively following the head child.

(here, V is the head word of S, and N is the head word of NP).
If in rule XP → X Y, X is head child and Y dependent,  
the headword of Y depends on the headword of X.

The maximal projection of a terminal w is the highest nonterminal in
the tree that w is headword of.  
Here, Y is a maximal projection.

�28

CS447 Natural Language Processing

Context-free grammars
CFGs capture only nested dependencies

The dependency graph is a tree
The dependencies do not cross

�29 CS447 Natural Language Processing

Beyond CFGs:  
Nonprojective dependencies

Dependencies: tree with crossing branches
Arise in the following constructions

- (Non-local) scrambling (free word order languages)  
Die Pizza hat Klaus versprochen zu bringen
- Extraposition (The guy is coming who is wearing a hat)
- Topicalization (Cheeseburgers, I thought he likes)

�30

CS447 Natural Language Processing

Dependency Treebanks

Dependency treebanks exist for many languages:
Czech
Arabic
Turkish
Danish
Portuguese
Estonian
.... 

Phrase-structure treebanks (e.g. the Penn Treebank) can
also be translated into dependency trees  
(although there might be noise in the translation)

�31 CS447 Natural Language Processing

The Prague Dependency Treebank
Three levels of annotation:

morphological: [<2M tokens] 
Lemma (dictionary form) + detailed analysis  
(15 categories with many possible values = 4,257 tags)

surface-syntactic (“analytical”): [1.5M tokens]  
Labeled dependency tree encoding grammatical functions 
(subject, object, conjunct, etc.)

semantic (“tectogrammatical”): [0.8M tokens] 
Labeled dependency tree for predicate-argument structure, 
information structure, coreference (not all words included)  
(39 labels: agent, patient, origin, effect, manner, etc....)

�32

CS447 Natural Language Processing

Examples: analytical level

�33 CS447 Natural Language Processing

Turkish is an agglutinative language  
with free word order.

Rich morphological annotations
Dependencies (next slide) are at the morpheme level

 
 
 
 
Very small -- about 5000 sentences

METU-Sabanci Turkish
Treebank

�34

CS447 Natural Language Processing

[this and prev. example from Kemal Oflazer’s talk at Rochester, April 2007]
�35

METU-Sabanci Turkish
Treebank

CS447 Natural Language Processing

Universal Dependencies
37 syntactic relations, intended to be applicable to all
languages (“universal”), with slight modifications for
each specific language, if necessary.

http://universaldependencies.org

�36

CS447 Natural Language Processing

Universal Dependency Relations
Nominal core arguments: nsubj (nominal subject), obj (direct
object), iobj (indirect object)
Clausal core arguments: csubj (clausal subject), ccomp
(clausal object [“complement”])
Non-core dependents: advcl (adverbial clause modifier), aux
(auxiliary verb),
Nominal dependents: nmod (nominal modifier), amod
(adjectival modifier),
Coordination: cc (coordinating conjunction), conj (conjunct)
 
and many more…

�37 CS447 Natural Language Processing

Parsing algorithms for DG
‘Transition-based’ parsers:

learn a sequence of actions to parse sentences
Models:  
State = stack of partially processed items  
 + queue/buffer of remaining tokens  
 + set of dependency arcs that have been found already  
Transitions (actions) = add dependency arcs; stack/queue operations

‘Graph-based’ parsers:
learn a model over dependency graphs
Models:  
a function (typically sum) of local attachment scores
For dependency trees, you can use a minimum spanning tree algorithm

�38

CS447 Natural Language Processing

Transition-based parsing
(Nivre et al.)

�39 CS447 Natural Language Processing

Transition-based parsing: assumptions
This algorithm works for projective dependency trees.
Dependency tree:

Each word has a single parent  
(Each word is a dependent of [is attached to] one other word) 

Projective dependencies:
There are no crossing dependencies.
For any i, j, k with i < k < j: if there is a dependency between wi and wj,
the parent of wk is a word wl between (possibly including) i and j: i ≤ l ≤ j,
while any child wm of wk has to occur between (excluding) i and j: i<m<j

�40

wi wk wj
wi wk wj the parent of wk:

one of wi…wj

any child of wk:
one of wi+1…wj-1

CS447 Natural Language Processing

Transition-based parsing
Transition-based shift-reduce parsing processes  
the sentence S = w0w1...wn from left to right.
Unlike CKY, it constructs a single tree.

Notation:
w0 is a special ROOT token.
VS = {w0, w1, ..., wn} is the vocabulary of the sentence
R is a set of dependency relations

The parser uses three data structures:
σ: a stack of partially processed words wi ∈ VS

β: a buffer of remaining input words wi ∈ VS

A: a set of dependency arcs (wi, r, wj) ∈ VS × R ×VS
�41 CS447 Natural Language Processing

Parser configurations (σ, β, A)
The stack σ is a list of partially processed words

We push and pop words onto/off of σ.
σ|w : w is on top of the stack.
Words on the stack are not (yet) attached to any other words.
Once we attach w, w can’t be put back onto the stack again.

 
The buffer β is the remaining input words

We read words from β (left-to-right) and push them onto σ
w|β : w is on top of the buffer.

 
The set of arcs A defines the current tree.

We can add new arcs to A by attaching the word on top of the
stack to the word on top of the buffer, or vice versa.

�42

CS447 Natural Language Processing

Parser configurations (σ, β, A)
We start in the initial configuration ([w0], [w1,..., wn], {})
 
(Root token, Input Sentence, Empty tree)
 
We can attach the first word (w1) to the root token w0,  
or we can push w1 onto the stack.
(w0 is the only token that can’t get attached to any other word)

We want to end in the terminal configuration ([], [], A)
 
(Empty stack, Empty buffer, Complete tree)
 
Success!  
We have read all of the input words (empty buffer) and have
attached all input words to some other word (empty stack)

�43 CS447 Natural Language Processing

Transition-based parsing
We process the sentence S = w0w1...wn from left to
right (“incremental parsing”)

In the parser configuration (σ|wi, wj|β, A):
wi is on top of the stack. wi may have some children
wj is on top of the buffer. wj may have some children
wi precedes wj (i < j)

We have to either attach wi to wj, attach wj to wi, or
decide that there is no dependency between wi and wj

 
If we reach (σ|wi, wj|β, A), all words wk with i < k < j have
already been attached to a parent wm with i ≤ m ≤ j

�44

CS447 Natural Language Processing

Parser actions
(σ, β, A): Parser configuration with stack σ, buffer β, set of arcs A
(w, r, w’): Dependency with head w, relation r and dependent w’

SHIFT: Push the next input word wi from the buffer β onto the stack σ
 (σ, wi|β, A) ⇒ (σ|wi, β, A) 

LEFT-ARCr: … wi…wj… (dependent precedes the head)
Attach dependent wi (top of stack σ) to head wj (top of buffer β)  
with relation r from wj to wi. Pop wi off the stack.
 (σ|wi, wj|β, A) ⇒ (σ, wj|β, A ∪ {(wj, r, wi)})  

RIGHT-ARCr: …wi…wj … (dependent follows the head)
Attach dependent wj (top of buffer β) to head wi (top of stack σ)  
with relation r from wi to wj. Move wi back to the buffer
 (σ|wi, wj|β, A) ⇒ (σ, wi|β, A ∪ {(wi, r, wj)})

�45 CS447 Natural Language Processing

An example sentence & parse

�46

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Dependency structure for an English sentence.

The basic assumption underlying all varieties of dependency grammar is the idea that syntactic
structure essentially consists of words linked by binary, asymmetrical relations called dependency
relations (or dependencies for short). A dependency relation holds between a syntactically subordinate
word, called the dependent, and another word on which it depends, called the head.1 This is illustrated
in figure 1.1, which shows a dependency structure for a simple English sentence, where dependency
relations are represented by arrows pointing from the head to the dependent.2 Moreover, each arrow
has a label, indicating the dependency type. For example, the noun news is a dependent of the verb
had with the dependency type subject (SBJ). By contrast, the noun effect is a dependent of type object
(OBJ) with the same head verb had. Note also that the noun news is itself a syntactic head in relation
to the word Economic, which stands in the attribute (ATT) relation to its head noun.

One peculiarity of the dependency structure in figure 1.1 is that we have inserted an artificial
word root before the first word of the sentence. This is a mere technicality, which simplifies both
formal definitions and computational implementations. In particular, we can normally assume that
every real word of the sentence should have a syntactic head. Thus, instead of saying that the verb
had lacks a syntactic head, we can say that it is a dependent of the artificial word root. In chapter 2,
we will define dependency structures formally as labeled directed graphs, where nodes correspond to
words (including root) and labeled arcs correspond to typed dependency relations.

The information encoded in a dependency structure representation is different from the infor-
mation captured in a phrase structure representation, which is the most widely used type of syntactic
representation in both theoretical and computational linguistics. This can be seen by comparing the
dependency structure in figure 1.1 to a typical phrase structure representation for the same sentence,
shown in figure 1.2. While the dependency structure represents head-dependent relations between
words, classified by functional categories such as subject (SBJ) and object (OBJ), the phrase structure
represents the grouping of words into phrases, classified by structural categories such as noun phrase
(NP) and verb phrase (VP).

1Other terms that are found in the literature are modifier or child, instead of dependent, and governor, regent or parent, instead of
head. Note that, although we will not use the noun modifier, we will use the verb modify when convenient and say that a dependent
modifies its head.

2This is the notational convention that we will adopt throughout the book, but the reader should be warned that there is a competing
tradition in the literature on dependency grammar according to which arrows point from the dependent to the head.

CS447 Natural Language Processing �47

Economic news had little effect on financial markets .

CS447 Natural Language Processing �48

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �49

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �50

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �51

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �52

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �53

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �54

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �55

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �56

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �57

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �58

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �59

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �60

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �61

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �62

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �63

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �64

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �65

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �66

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing �67

24 CHAPTER 3. TRANSITION-BASED PARSING

Transition Configuration

([root], [Economic, . . . , .], ∅)
SH⇒ ([root, Economic], [news, . . . , .], ∅)

LAatt ⇒ ([root], [news, . . . , .], A1 = {(news, ATT, Economic)})
SH⇒ ([root, news], [had, . . . , .], A1)

LAsbj ⇒ ([root], [had, . . . , .], A2 = A1∪{(had, SBJ, news)})
SH⇒ ([root, had], [little, . . . , .], A2)
SH⇒ ([root, had, little], [effect, . . . , .], A2)

LAatt ⇒ ([root, had], [effect, . . . , .], A3 = A2∪{(effect, ATT, little)})
SH⇒ ([root, had, effect], [on, . . . , .], A3)
SH⇒ ([root, . . . on], [financial, markets, .], A3)
SH⇒ ([root, . . . , financial], [markets, .], A3)

LAatt ⇒ ([root, . . . on], [markets, .], A4 = A3∪{(markets, ATT, financial)})
RApc ⇒ ([root, had, effect], [on, .], A5 = A4∪{(on, PC, markets)})

RAatt ⇒ ([root, had], [effect, .], A6 = A5∪{(effect, ATT, on)})
RAobj ⇒ ([root], [had, .], A7 = A6∪{(had, OBJ, effect)})

SH⇒ ([root, had], [.], A7)
RApu ⇒ ([root], [had], A8 = A7∪{(had, PU, .)})

RApred ⇒ ([], [root], A9 = A8∪{(root, PRED, had)})
SH⇒ ([root], [], A9)

Figure 3.2: Transition sequence for the English sentence in figure 1.1 (LAr = Left-Arcr , RAr =
Right-Arcr , SH = Shift).

1. c0 is the initial configuration c0(S) for S,

2. cm is a terminal configuration,

3. for every i such that 1 ≤ i ≤ m, there is a transition t ∈ T such that ci = t (ci−1).

A transition sequence starts in the initial configuration for a given sentence and reaches a terminal
configuration by applying valid transitions from one configuration to the next. The dependency tree
derived through this transition sequence is the dependency tree defined by the terminal configuration,
i.e., the tree Gcm = (VS, Acm), where Acm is the arc set in the terminal configuration cm. By way of
example, figure 3.2 shows a transition sequence that derives the dependency tree shown in figure 1.1
on page 2.

The transition system defined for dependency parsing in this section leads to derivations that
correspond to basic shift-reduce parsing for context-free grammars. The Left-Arcr and Right-
Arcr transitions correspond to reduce actions, replacing a head-dependent structure with its head,
while the Shift transition is exactly the same as the shift action. One peculiarity of the transitions,
as defined here, is that the “reduce transitions” apply to one node on the stack and one node in the
buffer, rather than two nodes on the stack. This simplifies the definition of terminal configurations
and has become standard in the dependency parsing literature.

Economic news had little effect on financial markets .

CS447 Natural Language Processing

Transition-based parsing in practice
Which action should the parser take under the current
configuration?

We also need a parsing model that assigns a score  
to each possible action given a current configuration.
-Possible actions:  
SHIFT, and for any relation r: LEFT-ARCr, or RIGHT-ARCr
-Possible features of the current configuration: 
The top {1,2,3} words on the buffer and on the stack,  
their POS tags, etc.

We can learn this model from a dependency
treebank.

�68

