CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Lecture 9:
 The CKY parsing algorithm

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Last lecture's key concepts

Natural language syntax
Constituents
Dependencies
Context-free grammar
Arguments and modifiers
Recursion in natural language

An example CFG

```
DT }->{\mathrm{ the, a}
N }->\mathrm{ {ball, garden, house, sushi }
P}->{\mathrm{ in, behind, with}
NP }->\mathrm{ DT N
NP }->\mathrm{ NP PP
PP}->P N
N : noun
P: preposition
NP: "noun phrase"
PP: "prepositional phrase"
```


Reminder: Context-free grammars

A CFG is a 4-tuple $\langle\mathbf{N}, \mathbf{\Sigma}, \mathbf{R}, S\rangle$ consisting of:
A set of nonterminals \mathbf{N}
(e.g. $\mathbf{N}=\{S, N P, V P$, PP, Noun, Verb, $\}$)

A set of terminals $\boldsymbol{\Sigma}$
(e.g. $\boldsymbol{\Sigma}=\{1$, you, he, eat, drink, sushi, ball, \})

A set of rules \mathbf{R}
$\mathbf{R} \subseteq\{A \rightarrow \beta$ with left-hand-side $(\mathrm{LHS}) \quad \mathrm{A} \in \mathbf{N}$ and right-hand-side (RHS) $\left.\beta \in(\mathbf{N} \cup \mathbf{\Sigma})^{*}\right\}$

A start symbol $\mathrm{S} \in \mathbf{N}$
CS447: Natural Language Processing (J. Hockenmaier)

Is string a a constituent?

He talks [in class].

Substitution test:

Can a be replaced by a single word?
He talks [there].
Movement test:
Can a be moved around in the sentence?
[In class], he talks.

Answer test:

Can a be the answer to a question?
Where does he talk? - [In class].

Constituents:

Heads and dependents

There are different kinds of constituents:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
Every phrase has a head:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
The other parts are its dependents.
Dependents are either arguments or adjuncts

Arguments are obligatory

Words subcategorize for specific sets of arguments:
Transitive verbs (sbj + obj): [John] likes [Mary]
All arguments have to be present:
*[John] likes. *likes [Mary].
No argument can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary].
Words can have multiple subcat frames:
Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats.

Adjuncts are optional

Adverbs, PPs and adjectives can be adjuncts:
Adverbs: John runs [fast].

> a [very] heavy book.

PPs: John runs [in the gym].
the book [on the table]
Adjectives: a [heavy] book
There can be an arbitrary number of adjuncts:
John saw Mary.
John saw Mary [yesterday].
John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]

Chomsky Normal Form

The right-hand side of a standard CFG can have an arbitrary number of symbols (terminals and nonterminals):

$$
\text { VP } \rightarrow \text { ADV eat NP }
$$

$$
\frac{\text { VP }}{\text { ADV eat }} \text { NP }
$$

A CFG in Chomsky Normal Form (CNF) allows only two kinds of right-hand sides:

- Two nonterminals: VP \rightarrow ADV VP
- One terminal: $\quad V P \rightarrow$ eat

Any CFG can be transformed into an equivalent CNF:
$\mathrm{VP} \rightarrow$ ADVP VP ${ }_{1}$
$\mathrm{VP}_{1} \rightarrow \mathrm{VP}_{\mathbf{2}} \mathrm{NP}$
$\mathrm{VP}_{2} \rightarrow$ eat

Heads, Arguments and Adjuncts in CFGs

Heads:

We assume that each RHS has one head, e.g.
VP \rightarrow Verb NP (Verbs are heads of VPs)
NP \rightarrow Det Noun (Nouns are heads of NPs)
$S \rightarrow$ NP VP (VPs are heads of sentences)
Exception: Coordination, lists: VP \rightarrow VP conj VP

Arguments:

The head has a different category from the parent:
VP \rightarrow Verb NP (the NP is an argument of the verb)
Adjuncts:
The head has the same category as the parent:

```
VP -> VP PP (the PP is an adjunct)
```


A note about ε-productions

Formally, context-free grammars are allowed to have empty productions ($\varepsilon=$ the empty string):
$\mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{NP} \rightarrow$ DT Noun $\mathrm{NP} \rightarrow \varepsilon$
These can always be eliminated without changing the language generated by the grammar:

$\mathrm{VP} \rightarrow \mathrm{V}$ NP	$\mathrm{NP} \rightarrow \mathrm{DT}$ Noun $\quad \mathrm{NP} \rightarrow \varepsilon$	
becomes		
$\mathrm{VP} \rightarrow \mathrm{V}$ NP	$\mathrm{VP} \rightarrow \mathrm{V} \varepsilon$	$\mathrm{NP} \rightarrow \mathrm{DT}$ Noun
which in turn becomes		
$\mathrm{VP} \rightarrow \mathrm{VNP}$	$\mathrm{VP} \rightarrow \mathrm{V}$	$\mathrm{NP} \rightarrow \mathrm{DT}$ Noun

We will assume that our grammars don't have ε-productions

CKY chart parsing algorithm

Bottom-up parsing:
start with the words
Dynamic programming:
save the results in a table/chart
re-use these results in finding larger constituents
Complexity: $O\left(n^{3}|G|\right)$
n : length of string, $|G|$: size of grammar)
Presumes a CFG in Chomsky Normal Form:
Rules are all either $\mathbf{A} \rightarrow \mathbf{B C}$ or $\mathbf{A} \rightarrow \mathbf{a}$
(with $\mathbf{A}, \mathbf{B}, \mathbf{C}$ nonterminals and \mathbf{a} a terminal)

CKY algorithm

1. Create the chart

(an $n \times n$ upper triangular matrix for an sentence with n words)

- Each cell chart[i][j] corresponds to the substring w $w^{(i)} . . . w^{(i)}$

2. Initialize the chart (fill the diagonal cells chart[i][i]): For all rules $X \rightarrow \mathrm{w}^{(\mathrm{i})}$, add an entry X to chart[i][i]

3. Fill in the chart:

Fill in all cells chart[i][i+1], then chart[i][i+2], ..., until you reach chart $[1][\mathrm{n}]$ (the top right corner of the chart)

- To fill chart $[\mathrm{i}][j \mathrm{j}]$, consider all binary splits $\mathrm{w}^{(\mathrm{i})} \ldots \mathrm{w}^{(\mathrm{k})} \mathrm{w}^{(\mathrm{k}+1)} \ldots \mathrm{w}^{(\mathrm{j})}$
- If the grammar has a rule $X \rightarrow Y Z$, chart $[\mathrm{i}][\mathrm{k}]$ contains a Y and chart $[k+1][j]$ contains a Z, add an X to chart $[i][j]$ with two backpointers to the Y in chart[$\mathrm{i}[\mathrm{k}]$ and the Z in chart $[\mathrm{k}+1][\mathrm{j}]$

4. Extract the parse trees from the S in chart[1][n].

The CKY parsing algorithm

CKY: filling the chart

CKY: filling one cell

chart[2][6]:
$w_{1} W_{2} W_{3} W_{4} W_{5} W_{6} w_{7}$

chart[2][6]:

The CKY parsing algorithm

we	we eat	we eat sushi	we eat sushi with	we eat sushi with tuna
$\mathrm{S} \rightarrow$ NP VP $\mathrm{VP} \rightarrow$ V NP	$\underset{\text { eat }}{\text { V }}$	$\underset{\text { eat sushi }}{\text { VP }}$	eat sushi with	$\underset{\text { eat sushi with tuna }}{\text { VP }}$
$\mathrm{VP} \rightarrow$ VP PP				NP
$\mathrm{V} \rightarrow$ eat	Each cell contains only a single entry for each nonterminal. Each entry may have a list of pairs of backpointers.			sushi with tuna
NP \rightarrow NP PP NP \rightarrow we				PP
NP \rightarrow sushi				
$\mathrm{NP} \rightarrow$ tuna				tuna
$\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP}$	We eat sushi with tuna			

The CKY parsing algorithm

What are the terminals in NLP?

Are the "terminals": words or POS tags?

For toy examples (e.g. on slides), it's typically the words
With POS-tagged input, we may either treat the POS tags as the terminals, or we assume that the unary rules in our grammar are of the form

$$
\text { POS-tag } \rightarrow \text { word }
$$

(so POS tags are the only nonterminals that can be rewritten as words; some people call POS tags "preterminals")

Additional unary rules

In practice, we may allow other unary rules, e.g. NP \rightarrow Noun
(where Noun is also a nonterminal)
In that case, we apply all unary rules to the entries in chart[i][j] after we've checked all binary splits (chart[i][k], chart[k+1][j])

Unary rules are fine as long as there are no "loops" that could lead to an infinite chain of unary productions, e.g.:
$X \rightarrow Y$ and $Y \rightarrow X$
or: $\mathbf{X} \rightarrow Y$ and $Y \rightarrow Z$ and $Z \rightarrow \mathbf{X}$
CS447: Natural Language Processing (J. Hockenmaier)

Exercise: CKY parser

I eat sushi with chopsticks with you

S	$\rightarrow \mathrm{NP}$	VP
NP	$\rightarrow \mathrm{NP}$	PP
NP	\rightarrow sushi	
NP	\rightarrow I	
NP	\rightarrow chopsticks	
NP	\rightarrow you	
VP	$\rightarrow \mathrm{VP}$	PP
VP	\rightarrow Verb	NP
Verb	\rightarrow eat	
PP	\rightarrow Prep	NP
Prep	\rightarrow with	

CKY so far...

Each entry in a cell chart[i][j] is associated with a nonterminal X.

If there is a rule $\mathrm{X} \rightarrow \mathrm{YZ}$ in the grammar, and there is a pair of cells chart[i][k], chart[k+1][j] with a Y in chart $[i][k]$ and a Z in $\operatorname{chart}[k+1][j]$, we can add an entry X to cell chart[i][j], and associate one pair of backpointers with the X in cell chart[i][k]

Each entry might have multiple pairs of backpointers.
When we extract the parse trees at the end,
we can get all possible trees.
We will need probabilities to find the single best tree!
CS447 Natural Language Processing

How do you count the number of parse trees for a sentence?

1. For each pair of backpointers
(e.g.VP \rightarrow V NP): multiply \#trees of children $\operatorname{trees}\left(\mathrm{VP} \mathrm{VP}_{\mathrm{V}} \rightarrow \mathrm{V} \mathrm{NP}\right)=\operatorname{trees}(\mathrm{V}) \times \operatorname{trees}(\mathrm{NP})$
2. For each list of pairs of backpointers (e.g.VP \rightarrow V NP and VP \rightarrow VP PP): sum \#trees $\operatorname{trees}(\mathrm{VP})=\operatorname{trees}\left(\mathrm{VP}_{\mathrm{VP} \rightarrow \mathrm{V} N P}\right)+\operatorname{trees}\left(\mathrm{VP}_{\mathrm{VP} \rightarrow \mathrm{VP}} \mathrm{PP}\right)$

Cocke Kasami Younger (1)

nitChart(n): for $i=1 \ldots n$: initCell(i, initCell(i,i):

for c in lex(word[i]): addToCell(cell[i][i], c, null, null) addToCell(Parent,cell,Left, Right) if (cell.hasEntry(Parent)):
$P=$ cell.getEntry(Parent)
P.addBackpointers(Left, Right)
else cell.addEntry(Parent, Left, Right)

fillChart(n):

for span $=1 \ldots n-1$.
for $i=1 . . . n$-span:
fillCell(i,i+span)
fillCell(i,j):
for $k=i . . j-1$:
combineCells(i, k, j)
combineCells(i,k,j):
for Y in cell $[i][k]$:
for Z in cell[k +1][j]:
for X in Nonterminals:
if $X \rightarrow Y Z$ in Rules:
addToCell(cell[i][j],X, Y, Z)

Dealing with ambiguity: Probabilistic Context-Free Grammars (PCFGs)

Grammars are ambiguous

A grammar might generate multiple trees for a sentence:

What's the most likely parse τ for sentence S ?
We need a model of $\mathrm{P}(\tau \mid \mathrm{S})$

Computing P(τ | S

Using Bayes' Rule:

$$
\begin{aligned}
\arg \max _{\tau} P(\tau \mid S) & =\arg \max _{\tau} \frac{P(\tau, S)}{P(S)} \\
& =\arg \max _{\tau} P(\tau, S) \\
& =\arg \max _{\tau} P(\tau) \text { if } \mathrm{S}=\operatorname{yield}(\tau)
\end{aligned}
$$

The yield of a tree is the string of terminal symbols that can be read off the leaf nodes

Computing $\mathrm{P}(\tau)$

T is the (infinite) set of all trees in the language:

$$
L=\left\{s \in \Sigma^{*} \mid \exists \tau \in T: \operatorname{yield}(\tau)=s\right\}
$$

We need to define $\mathrm{P}(\tau)$ such that:

$$
\begin{array}{lc}
\forall \tau \in T: & 0 \leq P(\tau) \leq 1 \\
& \sum_{\tau \in T} P(\tau)=1
\end{array}
$$

The set T is generated by a context-free grammar

Computing $\mathrm{P}(\tau)$ with a PCFG

The probability of a tree τ is the product of the probabilities
of all its rules:
$\mathrm{P}(\tau)=0.8 \times 0.3 \times 0.2 \times 1.0 \times 0.2^{3}$
$=0.00384$

S		NP VP	0.8
S	\rightarrow	S conj S	0.2
NP	\rightarrow	Noun	0.2
NP	\rightarrow	Det Noun	0.4
NP	\rightarrow	NP PP	0.2
NP		NP conj NP	0.2
VP	\rightarrow	Verb	0.4
VP	\rightarrow	Verb NP	0.3
VP	\rightarrow	Verb NP NP	0.1
VP	\rightarrow	VP PP	0.2
PP	\rightarrow	P NP	1.0

Probabilistic CKY：Viterbi

Like standard CKY，but with probabilities．
Finding the most likely tree $\operatorname{argmax}_{\tau} P(\tau, s)$ is similar to Viterbi for HMMs：

Initialization：every chart entry that corresponds to a terminal （entries X in cell［i］［i］）has a Viterbi probability $P_{\mathrm{VIT}}\left(\mathrm{X}_{[\mathrm{i}[\mathrm{i}]}\right)=1$

Recurrence：For every entry that corresponds to a non－terminal x in cell［i］［j］，keep only the highest－scoring pair of backpointers to any pair of children（Y in cell［i］［k］and Z in cell［k＋1］［j］）： $P_{\mathrm{VIT}}\left(\mathrm{X}_{[\mathrm{i}][\mathrm{j}]}\right)=\operatorname{argmax}_{\mathrm{Y}, \mathrm{Z}, \mathrm{k}} P_{\mathrm{VIT}}\left(\mathrm{Y}_{[\mathrm{i}][\mathrm{k}]}\right) \times P_{\mathrm{VIT}}\left(\mathrm{Z}_{[\mathrm{k}+1][\mathrm{j}]}\right) \times P(\mathrm{X} \rightarrow \mathrm{Y} \mathrm{Z} \mid \mathrm{X})$

Final step：Return the Viterbi parse for the start symbol S in the top cell［1］［n］．

Probabilistic CKY

Input：POS－tagged sentence
John＿N eats＿V pie＿N with＿P cream＿N

John	eats	pie	with	cream		S S	$\begin{aligned} & \rightarrow \mathrm{NP} \text { VP } \\ & \rightarrow \mathrm{S} \text { conj } \mathrm{S} \end{aligned}$	0.8 0.2
$\begin{array}{ll} \mathrm{N} & \mathrm{NP} \\ 1.0 & 0.2 \end{array}$	$\underset{0.8 \cdot 0.2 \cdot 0.3}{S}$	$\mid \underset{0.8 \cdot 0.2 \cdot 0.06}{S}$		$\underset{0.2 \cdot 0.00366}{\mathrm{~S}}$	John	NP NP	$\begin{aligned} & \rightarrow \text { Noun } \\ & \rightarrow \text { Det Noun } \end{aligned}$	0.2 0.4
	$\begin{array}{ll} V & V P \\ 1.0 & 0.3 \end{array}$	$\begin{gathered} \hline \text { VP } \\ \begin{array}{c} 1 \cdot 0.3 \cdot 0.2 \\ =0.06 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \end{gathered}$		VP $\max (1.0 \cdot 0.008 \cdot 0.3$ $0.06 \cdot 0.2 \cdot 0.3)$	3，eats	NP NP	\rightarrow NP PP \rightarrow NP conj NP	0.2 0.2
		$\begin{array}{\|ll\|} \hline \mathrm{N} & \mathrm{NP} \\ 1.0 & 0.2 \end{array}$		$\begin{gathered} \mathrm{NP} \\ \substack{0.2 .0 .2 \cdot 0.2 \\ =0.008} \end{gathered}$	pie	VP	$\begin{aligned} & \rightarrow \text { Verb } \\ & \rightarrow \text { Verb NP } \end{aligned}$	0.3 0.3
			$\begin{aligned} & \mathrm{P} \\ & 1.0 \end{aligned}$	$\underset{1 \cdot 1 \cdot 0.2}{P P}$	with	VP	$\begin{aligned} & \rightarrow \text { Verb NP NP } \\ & \rightarrow \text { VP PP } \end{aligned}$	0.1 0.3
				$\begin{array}{\|ll\|} \hline \mathrm{N} & \mathrm{NP} \\ 1.0 & 0.2 \end{array}$	cream	PP	$\rightarrow \mathrm{P}$ NP	1.0

