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Graphical models for 
sequence labeling
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Directed graphical models
Graphical models are a notation for probability models.
In a directed graphical model, each node represents a 
distribution over a random variable:
–  P(X) = 
Arrows represent dependencies (they define what other 
random variables the current node is conditioned on)
– P(Y) P(X | Y ) =  

– P(Y) P(Z) P(X | Y, Z) = 
 

Shaded nodes represent observed variables.
White nodes represent hidden variables 
– P(Y) P(X | Y) with Y hidden and X observed = 
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HMMs as graphical models
HMMs are generative models of the observed input 
string w 
They ‘generate’ w with P(w,t) = ∏iP(t(i)| t(i−1))P(w(i)| t(i) ) 
When we use an HMM to tag, we observe w, and 
need to find t 

t(1) t(2) t(3) t(4)

w(1) w(2) w(3) w(4)

CS447: Natural Language Processing

Discriminative probability models
A discriminative or conditional model of the labels t 
given the observed input string w models  
 P(t | w) = ∏iP(t(i) |w(i), t(i−1)) directly. 

t(1) t(2) t(3) t(4)

w(1) w(2) w(3) w(4)
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Discriminative models
There are two main types of discriminative  
probability models:

–Maximum Entropy Markov Models (MEMMs)
–Conditional Random Fields (CRFs)

MEMMs and CRFs:
–are both based on logistic regression
–have the same graphical model
– require the Viterbi algorithm for tagging
–differ in that MEMMs consist of independently 

learned distributions, while CRFs are trained to 
maximize the probability of the entire sequence
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Probabilistic classification
Classification:  
Predict a class (label) c for an input x 

There are only a (small) finite number of possible class labels 

Probabilistic classification: 
– Model the probability P( c | x) 
P(c|x) is a probability if 0 ≤ P (ci | x) ≤ 1, and  ∑iP( ci | x) = 1 
–Return the class c* = argmaxi P (ci | x)  

that has the highest probability  

One standard way to model P( c | x) is logistic 
regression (used by MEMMs and CRFs)
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MEMMs use a MaxEnt classifier for each P(t(i) |w(i), t(i−1)): 
 

Since we use w to refer to words, let’s use λjk as the weight 
for the feature function fj(t(i−1), w(i)) when predicting tag tk: 

Maximum Entropy Markov Models

t(i−1) t(i)

w(i)

P(t(i) = tk | t(i�1),w(i)) =
exp(Â j l jk f j(t(i�1),w(i))

Âl exp(Â j l jl f j(t(i�1),w(i))
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Using features
Think of feature functions as useful questions you can 
ask about the input x:  

– Binary feature functions: 
  ffirst-letter-capitalized(Urbana) = 1 
  ffirst-letter-capitalized(computer) = 0 

– Integer (or real-valued) features:  
fnumber-of-vowels(Urbana) = 3 

Which specific feature functions are useful  
will depend on your task (and your training data).
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From features to probabilities
We associate a real-valued weight wic with each 
feature function fi(x) and output class c

Note that the feature function fi(x) does not have to depend  
on c as long as the weight does (note the double index wic) 

This gives us a real-valued score for predicting class c 
for input x:  score(x,c) =  ∑iwic fi(x)  

This score could be negative, so we exponentiate it:             
score(x,c) =  exp( ∑iwic fi(x)) 

To get a probability distribution over all classes c,  
we renormalize these scores: 
P(c | x) = score(x,c)∕∑j score(x,cj)             
            = exp( ∑iwic fi(x))∕∑j exp( ∑iwij fi(x))
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Learning = finding weights w
We use conditional maximum likelihood estimation 
(and standard convex optimization algorithms)  
to find/learn w 

(for more details, attend CS446 and CS546) 

The conditional MLE training objective: 
Find the w that assigns highest probability to all observed 
outputs ci given the inputs xi

Learning: finding w

ŵ = argmax
w �

i
P(ci|xi,w)

= argmax
w ⇥

i
log(P(ci|xi,w))

= argmax
w ⇥

i
log

�
e⇥ j w j f j(xi,c)

⇥c� e⇥ j w j f j(xi,c�)

⇥ �12
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Terminology
Models that are of the form  
 P(c | x) = score(x,c)∕∑j score(x,cj) 
              = exp( ∑iwic fi(x))∕∑j exp( ∑iwij fi(x))  

are also called loglinear models, Maximum Entropy 
(MaxEnt) models, or multinomial logistic regression 
models.

CS446 and CS546 should give you more details about these. 

The normalizing term ∑j exp( ∑iwij fi(x)) is also called  
the partition function and is often abbreviated as Z
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Features for Sequence Labeling
What features are useful to model P(t(i) |w(i), t(i−1)) ?

The identity of the previous label
Properties of the current word:
-w(i) starts with/contains a capital letter/number,…
-w(i) contains the character “A” (“B”, …”Z”, …1, 2, …0,….)
-w(i) ends in “ing”, “ed”, …. 
-… 

Feature engineering is essential for any practical 
We typically define feature templates (e.g. let any of 
the first, or last, n (=1,2,3,…) characters be used as a 
separate feature. This results in a very large number 
of actual features (and weights to be learned)
Methods for feature selection become essential
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Feature Engineering 
Feature engineering (finding useful features) is 
essential to get good performance out of any classifier

This requires domain expertise
 

We typically define feature templates 
(e.g. let any of the first, or last, n (=1,2,3,…) characters be 
used as a separate feature. 

This results in a very large number of actual features 
(and weights to be learned)  

Methods for feature selection become essential.
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On to new material..
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Previous key concepts
NLP tasks dealing with words...
-POS-tagging, morphological analysis 

… require finite-state representations,
-Finite-State Automata and Finite-State Transducers  

… the corresponding probabilistic models,
-Probabilistic FSAs and Hidden Markov Models
-Estimation: relative frequency estimation, EM algorithm 

… and appropriate search algorithms
-Dynamic programming: Forward, Viterbi, Forward-Backward
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The next key concepts
NLP tasks dealing with sentences...
-Syntactic parsing and semantic analysis 

… require (at least) context-free representations,
-Context-free grammars, unification grammars 

… the corresponding probabilistic models,
-Probabilistic Context-Free Grammars, Loglinear models
-Estimation: Relative Frequency estimation, EM algorithm, etc. 

… and appropriate search algorithms
-Dynamic programming:  chart parsing, inside-outside 
algorithm
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Search  
Algorithm
(e.g Viterbi)

Dealing with ambiguity

Structural  
Representation

(e.g FSA)

Scoring
Function

(Probability model,  
e.g HMM)
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Today’s lecture
Introduction to natural language syntax (‘grammar’): 

Constituency and dependencies
Context-free Grammars
Dependency Grammars
A simple CFG for English

�20



CS447: Natural Language Processing (J. Hockenmaier)

What is grammar?
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No, not 
really, not in 

this class
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What is grammar?
Grammar formalisms
(= linguists’ programming languages)

A precise way to define and describe  
the structure of sentences. 
(N.B.: There are many different formalisms out there, which each define their 
own data structures and operations)

Specific grammars
(= linguists’ programs)

Implementations (in a particular formalism) for a particular 
language (English, Chinese,....)
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Can we define a program that 
generates all English sentences? 

The number of sentences is infinite.
But we need our program to be finite.
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Overgeneration

Undergeneration

John saw Mary.
I ate sushi with tuna.

I ate the cake that John had  
made for me yesterday

I want you to go there.

John made some cake.

English

Did you go there? 

.....

John Mary saw.

 with tuna sushi ate I.

Did you went there? 

....
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Noun
(Subject) Verb

(Head)
Noun

(Object)

I   eat   sushi.

Basic sentence structure
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This is a dependency graph:

I   eat   sushi.

sbj obj

eat

sushiI

sbj obj
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A finite-state-automaton (FSA)

Noun 
(Subject)

Noun 
(Object)Verb (Head)
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A Hidden Markov Model (HMM)

Noun 
(Subject)

Noun 
(Object)Verb (Head)

I, you, .... eat, drink sushi, ...
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Words take arguments
I eat sushi.     ✔ 
I eat sushi you. ??? 
I sleep sushi  ??? 
I give sushi   ??? 
I drink sushi   ? 

Subcategorization  
(purely syntactic: what set of arguments do words take?) 
Intransitive verbs (sleep)  take only a subject.
Transitive verbs (eat) take also one (direct) object. 
Ditransitive verbs (give) take also one (indirect) object.

Selectional preferences  
(semantic: what types of arguments do words tend to take) 
The object of eat should be edible.
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A better FSA

Noun 
(Subject)

Noun 
(Object)

Transitive 
Verb (Head)

Intransitive 
Verb (Head)
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Language is recursive

the ball 
the big ball 

the big, red ball 
the big, red, heavy ball 

....

Adjectives can modify nouns.
The number of modifiers (aka adjuncts)  
a word can have is (in theory) unlimited.  
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Another FSA

Determiner Noun 

Adjective
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Recursion can be  
more complex

the ball 
the ball in the garden 

the ball in the garden behind the house 
the ball in the garden behind the house next to the school 

....
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Yet another FSA

Det Noun 

Adj

Preposition

So, why do we need anything  
beyond regular (finite-state) grammars? 
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What does this mean?

the ball            in the garden   behind    the house

�35

There is an 
attachment 
ambiguity
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FSAs do not generate  
hierarchical structure

�36
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 [                                         ]   [                                               ]   [                               ] I   eat   sushi    with  tuna

What is the structure
 of a sentence?
Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna)  
..which form phrases or constituents: “sushi with tuna”  

Sentence structure defines dependencies  
between words or phrases:
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Strong vs. weak  
generative capacity
Formal language theory:
-defines language as string sets
- is only concerned with generating these strings 
(weak generative capacity) 

Formal/Theoretical syntax (in linguistics):
-defines language as sets of strings with (hidden) structure
- is also concerned with generating the right structures 
(strong generative capacity)
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Context-free grammars (CFGs) 
capture recursion

Language has complex constituents
(“the garden behind the house”)  

Syntactically, these constituents behave  
just like simple ones.

(“behind the house” can always be omitted) 

CFGs define nonterminal categories  
to capture equivalent constituents. 
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Context-free grammars
A CFG is a 4-tuple 〈N, Σ, R, S〉 consisting of:

A set of nonterminals N  
(e.g. N = {S, NP, VP, PP, Noun, Verb, ....}) 

A set of terminals Σ 
(e.g. Σ = {I, you, he, eat, drink, sushi, ball, })  

A set of rules R  
R ⊆ {A → β  with left-hand-side (LHS)   A ∈ N  
                   and right-hand-side (RHS) β ∈ (N ∪ Σ)* }
 
A start symbol S ∈ N 
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An example
DT → {the, a}
N → {ball, garden, house, sushi }
P → {in, behind, with}
NP → DT N
NP → NP PP
PP → P   NP

N: noun
P: preposition
NP: “noun phrase”
PP: “prepositional phrase”
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CFGs define parse trees

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

N → {sushi, tuna}
P → {with}
V → {eat}
NP → N
NP → NP PP
PP → P    NP
VP → V   NP
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CFGs and center embedding
The mouse ate the corn. 

The mouse that the snake ate ate the corn. 
The mouse that the snake that the hawk ate ate ate the corn. 

....
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CFGs and center embedding
Formally, these sentences are all grammatical,  
because they can be generated by the CFG  
that is required for the first sentence:

S               →  NP    VP
NP             →  NP   RelClause
RelClause  → that  NP ate

Problem: CFGs are not able to capture bounded recursion. 
(‘only embed one or two relative clauses’).  
 
To deal with this discrepancy between what the model predicts 
to be grammatical, and what humans consider grammatical, 
linguists distinguish between a speaker’s competence 
(grammatical knowledge) and performance (processing and 
memory limitations) 
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CFGs are equivalent to Pushdown 
automata (PDAs)
PDAs are FSAs with an additional stack: 
Emit a symbol and push/pop a symbol from the stack  
 
 
 
 
 
 

This is equivalent to the following CFG:
S  → a X b     S  → a b 
X  → a X b     X → a b

Push ‘x’  
on stack.
Emit ‘a’

�45

Pop ‘x’ 
from stack.

Emit ‘b’

Accept if 
stack empty.
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Action Stack String
1. Push x on stack. Emit a. x a
2. Push x on stack. Emit a. xx aa
3. Push x on stack. Emit a. xxx aaa
4. Push x on stack. Emit a. xxxx aaaa
5. Pop x off stack. Emit b. xxx aaaab
6. Pop x off stack. Emit b. xx aaaabb
7. Pop x off stack. Emit b. x aaaabbb
8. Pop x off stack. Emit b aaaabbbb

Generating anbn

�46

CS447: Natural Language Processing (J. Hockenmaier)

Defining grammars 
for natural language
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Two ways to represent structure

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

Phrase structure trees Dependency trees
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Structure (syntax) corresponds  
to meaning (semantics)

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks
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Dependency grammar
DGs describe the structure of sentences as a  
directed acyclic graph. 

The nodes of the graph are the words
The edges of the graph are the dependencies.

Typically, the graph is assumed to be a tree.

Note: the relationship between DG and CFGs:
If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.
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Constituents: 
Heads and dependents
There are different kinds of constituents:

Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has a head:
Noun phrases: the man, a girl with glasses, Illinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
The other parts are its dependents.
Dependents are either arguments or adjuncts
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Is string α a constituent?

Substitution test: 
Can α be replaced by a single word?  
He talks [there]. 

Movement test: 
Can α be moved around in the sentence?  
[In class], he talks.

Answer test: 
Can α be the answer to a question?  
Where does he talk? - [In class].

He talks [in class].
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Arguments are obligatory
Words subcategorize for specific sets of arguments:

Transitive verbs (sbj + obj):   [John] likes [Mary] 

All arguments have to be present:
*[John] likes.       *likes [Mary]. 

No argument can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary]. 

Words can have multiple subcat frames:
Transitive eat (sbj + obj):   [John] eats [sushi].
Intransitive eat (sbj): [John] eats. 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Adjuncts are optional
Adverbs, PPs and adjectives can be adjuncts:

Adverbs: John runs [fast].   
                 a [very] heavy book.  
PPs:      John runs [in the gym].  
               the book [on the table]
Adjectives: a [heavy] book 

There can be an arbitrary number of adjuncts:
John saw Mary. 
John saw Mary [yesterday]. 
John saw Mary [yesterday] [in town] 
John saw Mary [yesterday] [in town] [during lunch] 
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]
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A context-free grammar  
for a fragment of 
English
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Noun phrases (NPs)
Simple NPs: 
[He] sleeps.             (pronoun)
[John] sleeps.         (proper name)
[A student] sleeps. (determiner + noun)

Complex NPs: 
[A tall student] sleeps.                        (det + adj + noun)
[The student in the back] sleeps.       (NP + PP)
[The student who likes MTV] sleeps. (NP + Relative Clause)
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The NP fragment
NP → Pronoun
NP → ProperName  
NP → Det  Noun

Det → {a, the, every}
Pronoun → {he, she,...}
ProperName → {John, Mary,...}
Noun → AdjP Noun  
Noun → N
NP → NP PP
NP → NP RelClause
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Adjective phrases (AdjP) and 
prepositional phrases (PP)
AdjP → Adj
AdjP → Adv AdjP
Adj → {big, small, red,...}
Adv → {very, really,...} 

PP → P NP
P → {with, in, above,...} 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The verb phrase (VP)
He [eats]. 
He [eats sushi]. 
He [gives John sushi]. 
He [eats sushi with chopsticks]. 

VP → V
VP → V NP
VP → V NP PP
VP → VP PP

V → {eats, sleeps gives,...}
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Capturing subcategorization
He [eats]. ✔ 
He [eats sushi]. ✔ 
He [gives John sushi]. ✔ 
He [eats sushi with chopsticks]. ✔ 
*He [eats John sushi]. ??? 

VP → Vintrans
VP → Vtrans NP
VP → Vditrans NP NP
VP → VP PP
Vintrans → {eats, sleeps}  
Vtrans    → {eats} 
Vtrans    → {gives} 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Sentences

[He eats sushi]. 
[Sometimes, he eats sushi]. 
[In Japan, he eats sushi]. 
 
S → NP VP
S → AdvP S
S → PP S

He says [he eats sushi]. 
VP → Vcomp S
Vcomp → {says, think, believes}
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Sentences redefined

[He eats sushi].   ✔ 
*[I eats sushi].     ??? 
*[They eats sushi].     ??? 

S → NP3sg VP3sg
S → NP1sg VP1sg
S → NP3pl VP3pl

We need features to capture agreement:
(number, person, case,…)
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Complex VPs
In English, simple tenses have separate forms:
 
present tense: the girl eats sushi
simple past tense: the girl ate sushi  

Complex tenses, progressive aspect and passive 
voice consist of auxiliaries and participles: 
 
past perfect tense: the girl has eaten sushi
future perfect: the girl will have eaten sushi
passive voice: the sushi was eaten by the girl
progressive: the girl is/was/will be eating sushi
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VPs redefined
He [has [eaten sushi]].
The sushi [was [eaten by him]]. 

VP →  Vhave  VPpastPart
VP →  Vbe  VPpass
VPpastPart → VpastPart NP
VPpass → VpastPart PP
Vhave→ {has} 
VpastPart→ {eaten, seen}

We need more nonterminals (e.g. VPpastpart).
N.B.: We call VPpastPart, VPpass, etc. `untensed’ VPs
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Coordination
[He eats sushi] and [she drinks tea] 
[John] and [Mary] eat sushi. 
He [eats sushi] and [drinks tea] 
 
S   → S conj S
NP → NP conj NP
VP → VP conj VP

He says [he eats sushi]. 
VP → Vcomp S
Vcomp → {says, think, believes}
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Relative clauses
Relative clauses modify a noun phrase:
the girl [that eats sushi] 

Relative clauses lack a noun phrase, which is 
understood to be filled by the NP they modify:
‘the girl that eats sushi’  implies ‘the girl eats sushi’ 

There are subject and object relative clauses:
subject: ‘the girl that eats sushi’  
object: ‘the sushi that the girl eats’
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Yes/No questions
Yes/no questions consist of an auxiliary, a subject 
and an (untensed) verb phrase: 

does she eat sushi?
have you eaten sushi?  

YesNoQ → Aux  NP VPinf
YesNoQ → Aux  NP VPpastPart
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Wh-questions
Subject wh-questions consist of an wh-word, an 
auxiliary and an (untensed) verb phrase: 

Who has eaten the sushi?  

Object wh-questions consist of an wh-word, an 
auxiliary, an NP and an (untensed) verb phrase: 

What does Mary eat?  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Today’s key concepts
Natural language syntax

Constituents
Dependencies
Context-free grammar
Arguments and modifiers
Recursion in natural language
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Today’s reading
Textbook:

Jurafsky and Martin, Chapter 12, sections 1-7
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