CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Lecture 6: HMM algorithms

Julia Hockenmaier

juliahmr@illinois.edu
3324 Siebel Center

Recap: Statistical POS tagging

What is the most likely sequence of tags \mathbf{t} for the given sequence of words \mathbf{w} ?

HMMs as probabilistic automata

HMMs as probabilistic automata

Transition probabilities $\mathrm{P}\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$:

Probability of going from one state $\left(\mathrm{t}_{\mathrm{i}-1}\right)$ of the automaton to the next (t_{i})
"Markov model": We're making a Markov [independence] assumption for how to move between states of the automaton

Emission probabilities $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}}\right)$:

Probability of emitting a symbol $\left(w_{i}\right)$ in a given state of the automaton (t_{i})
"Hidden Markov model": The data that we see (at test time) consists only of the words \mathbf{w}, and we find tags for \mathbf{w} by searching for the most likely sequence of (hidden) states of the automaton (the tags \mathbf{t}) that generated the data \mathbf{w}

Using HMMs for tagging

-The input to an HMM tagger is a sequence of words, \mathbf{w}. The output is the most likely sequence of tags, \mathbf{t}, for \mathbf{w}.
-For the underlying HMM model, w is a sequence of output symbols, and t is the most likely sequence of states (in the Markov chain) that generated w.

An example HMM

Transition Matrix A

	\mathbf{D}	\mathbf{N}	\mathbf{V}	\mathbf{A}	.
\mathbf{D}		0.8		0.2	
\mathbf{N}		0.7	0.3		
\mathbf{V}	0.6				0.4
\mathbf{A}		0.8		0.2	
.					

Emission Matrix B

	the	man	ball	throws	sees	red	blue	.
D	1							
N		0.7	0.3					
V				0.6	0.4			
A						0.8	0.2	
.								1

Initial state vector π

	\mathbf{D}	\mathbf{N}	\mathbf{V}	\mathbf{A}	.
π	1				

CS498JH: Introduction to NLP

Encoding a trigram model as FSA

Bigram model:
States = Tag Unigrams Trigram model: States $=$ Tag Bigrams

Building an HMM tagger

To build an HMM tagger, we have to:
-Train the model, i.e. estimate its parameters (the transition and emission probabilities) Easy case: we have a corpus labeled with POS tags (supervised learning)
-Define and implement a tagging algorithm that finds the best tag sequence t^{*} for each input sentence w:

$$
\mathbf{t}^{*}=\operatorname{argmax}_{\mathbf{t}} P(\mathbf{t}) P(\mathbf{w} \mid \mathbf{t})
$$

Trigram HMMs

In a trigram HMM tagger, each state q_{i} corresponds to a POS tag bigram (the tags of the current and preceding word): $\mathrm{q}_{\mathrm{i}}=\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{k}}$

Emission probabilities depend only on the current POS tag: States $\mathrm{t}_{\mathrm{j} k}$ and $\mathrm{t}_{\mathrm{i} k}$ use the same emission probabilities $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{k}}\right)$

Learning an HMM

Where do we get the transition probabilities $P\left(t_{j} \mid t_{i}\right)$ (matrix A) and the emission probabilities $P\left(w_{j} \mid t_{i}\right)$ (matrix B) from?
Case 1: We have a POS-tagged corpus.

- This is learning from labeled data, aka "supervised learning"

```
Pierre_NNP Vinken_NNP,_, 61_CD years_NNS
old_JJ ,_, will MD join vB the DT board_NN
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
```

Case 2: We have a raw (untagged) corpus and a tagset.

- This is learning from unlabeled data, aka "unsupervised learning"

```
Pierre Vinken, 61 years old, will
oin the board as a nonexecutive
director Nov. }2
```


Learning an HMM from labeled data

```
Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS
    old_JJ ,_, will_MD join_VB the_DT board_NI
    as_IN a_DT nonexecutive_JJ director_NN Nov._NNP
    29_CD .
```

We count how often we see $t_{i} t_{j}$ and $w_{j} t_{i}$ etc. in the data (use relative frequency estimates):

Learning the transition probabilities:

$$
P\left(t_{j} \mid t_{i}\right)=\frac{C\left(t_{i} t_{j}\right)}{C\left(t_{i}\right)}
$$

Learning the emission probabilities:

$$
P\left(w_{j} \mid t_{i}\right)=\frac{C\left(w_{j-} t_{i}\right)}{C\left(t_{i}\right)}
$$

We might use some smoothing, but this is pretty trivial...
CS498JH: Introduction to NLP

Finding the best tag sequence

The number of possible tag sequences is exponential in the length of the input sentence:

Each word can have up to T tags.
There are N words.
There are up to T^{N} possible tag sequences.
We cannot enumerate all T^{N} possible tag sequences.
But we can exploit the independence assumptions in the HMM to define an efficient algorithm that returns the tag sequence with the highest probability

Learning an HMM from unlabeled data

```
Pierre Vinken, 61 years old, will
join the board as a nonexecutive
director Nov. }2
```

Tagset: NNP: proper noun CD: numeral,
JJ: adjective,

We can't count anymore.
We have to guess how often we'd expect to see $t_{i} t_{j}$ etc. in our data set. Call this expected count $\langle C(\ldots)\rangle$
-Our estimate for the transition probabilities:

$$
\hat{P}\left(t_{j} \mid t_{i}\right)=\frac{\left\langle C\left(t_{i} t_{j}\right)\right\rangle}{\left\langle C\left(t_{i}\right)\right\rangle}
$$

-Our estimate for the emission probabilities:

$$
\hat{P}\left(w_{j} \mid t_{i}\right)=\frac{\left\langle C\left(w_{j} t_{i}\right)\right\rangle}{\left\langle C\left(t_{i}\right)\right\rangle}
$$

-We will talk about how to obtain these counts on Friday CS447: Natural Language Processing (J. Hockenmaier)

Dynamic Programming for HMMs

The three basic problems for HMMs

We observe an output sequence $\boldsymbol{w}=w_{1} \ldots w_{\mathrm{N}}$: $\boldsymbol{w}=$ "she promised to back the bill"

Problem I (Likelihood): find $P(w \mid \lambda)$
Given an $\operatorname{HMM} \lambda=(A, B, \pi)$, compute the likelihood of the observed output, $P(\boldsymbol{w} \mid \lambda)$

Problem II (Decoding): find $Q=q_{1 . .} q_{\mathrm{T}}$
Given an $\operatorname{HMM} \lambda=(A, B, \pi)$, what is the most likely sequence of states $Q=q_{1 . .} q_{\mathrm{N}} \approx t_{1} \ldots t_{\mathrm{N}}$ to generate w ?

Problem III (Estimation): find $\operatorname{argmax}_{\lambda} P(\boldsymbol{w} \mid \lambda)$
Find the parameters A, B, π which maximize $P(\boldsymbol{w} \mid \lambda)$

Dynamic programming

Dynamic programming is a general technique to solve certain complex search problems by memoization
1.) Recursively decompose the large search problem into smaller subproblems that can be solved efficiently
-There is only a polynomial number of subproblems.
2.) Store (memoize) the solution of each subproblem in a common data structure
-Processing this data structure takes polynomial time

How can we solve these problems?

I. Likelihood of the input w :

Compute $P(\boldsymbol{w} \mid \lambda)$ for the input \boldsymbol{w} and HMM λ
II. Decoding (= tagging) the input \boldsymbol{w} :

Find the best tags $t^{*}=\operatorname{argmax}_{t} P(t \mid w, \lambda)$ for the input w and HMM λ
III. Estimation (= learning the model):

Find the best model parameters $\lambda^{*}=\operatorname{argmax}_{\lambda} P(\boldsymbol{t}, \boldsymbol{w} \mid \lambda)$
for the training data \boldsymbol{w}
These look like hard problems: With T tags, every input string $\boldsymbol{w}_{1 \ldots n}$ has T^{n} possible tag sequences

Can we find efficient (polynomial-time) algorithms?

Dynamic programming algorithms for HMMs

I. Likelihood of the input:

Compute $P(\boldsymbol{w} \mid \lambda)$ for an input sentence \boldsymbol{w} and HMM λ
\Rightarrow Forward algorithm
II. Decoding (=tagging) the input:

Find best tags $\boldsymbol{t}^{*}=\operatorname{argmax}_{\boldsymbol{t}} P(\boldsymbol{t} \mid \boldsymbol{w}, \lambda)$ for an input sentence \boldsymbol{w} and HMM λ \Rightarrow Viterbi algorithm
III. Estimation (=learning the model):

Find best model parameters $\lambda^{*}=\operatorname{argmax}_{\lambda} P(\boldsymbol{t}, \boldsymbol{w} \mid \lambda)$ for training data \boldsymbol{w} \Rightarrow Forward-Backward algorithm

Bookkeeping: the trellis

We use a $\mathrm{N} \times \mathrm{T}$ table ("trellis") to keep track of the HMM. The HMM can assign one of the T tags to each of the N words.

Computing $P(\mathbf{t}, \mathbf{w})$ for one tag sequence

One path through the trellis = one tag sequence
To get its probability, we just multiply the initial state and all emission and transition probabilities

One tag sequence = one path through trellis

One path through the trellis = one tag sequence

The Viterbi algorithm

Finding the best tag sequence

The number of possible tag sequences is exponential in the length of the input sentence:

Each word can have up to T tags.
There are N words.
There are up to T^{N} possible tag sequences.
We cannot enumerate all T^{N} possible tag sequences.
But we can exploit the independence assumptions in the HMM to define an efficient algorithm that returns the tag sequence with the highest probability in linear $(O(N))$ time.

HMM decoding

We observe a sentence $\mathbf{w}=w^{(1)} \ldots w^{(\mathbb{N})}$
$\mathbf{w}=$ "she promised to back the bill"
We want to use an HMM tagger to find its POS tags t

$$
\mathbf{t}^{*}=\operatorname{argmax}_{t} \mathrm{P}(\mathbf{w}, \mathbf{t})
$$

$$
=\operatorname{argmax}_{t} \mathrm{P}\left(\mathrm{t}^{(1)}\right) \cdot \mathrm{P}\left(\mathrm{w}^{(1)} \mid \mathrm{t}^{(1)}\right) \cdot \mathrm{P}\left(\mathrm{t}^{(2) \mid} \mid \mathrm{t}^{(1)}\right) \cdot \ldots \cdot \mathrm{P}\left(\mathrm{w}^{(\mathrm{N}) \mid} \mathrm{t}^{(\mathrm{N})}\right)
$$

To do this efficiently, we will use dynamic programming to exploit the independence assumptions in the HMM.

Notation: $\mathrm{t}_{\mathrm{i}} / \mathrm{w}_{\mathrm{i}}$ Vs $\mathrm{t}^{\left(\mathrm{i} / / w^{(i)}\right.}$

To make the distinction between the i-th word/tag in the vocabulary/tag set and the i-th word/tag in the sentence clear:
use superscript notation $w^{(i)}$ for the i-th token in the sequence
and subscript notation w_{i} for the i-th type in the inventory (tagset/vocabulary):

The Viterbi algorithm

A dynamic programming algorithm which finds the best (=most probable) tag sequence \mathbf{t}^{*} for an input sentence $\mathbf{w}: \mathbf{t}^{*}=\operatorname{argmax}_{\mathbf{t}} \mathrm{P}(\mathbf{w} \mid \mathbf{t}) \mathrm{P}(\mathbf{t})$

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in $\mathrm{O}\left(\mathrm{T}^{2} \mathrm{~N}\right)$ steps for an input sentence with N words and a tag set of T tags.

The independence assumptions of the HMM tell us how to break up the big search problem
(find $\mathbf{t}^{*}=\operatorname{argmax}_{\mathbf{t}} \mathrm{P}(\mathbf{w} \mid \mathbf{t}) \mathrm{P}(\mathbf{t})$) into smaller subproblems.
The data structure used to store the solution of these subproblems is the trellis.

HMM independences

1. Emissions depend only on the current tag:
$\ldots \mathrm{P}\left(\mathrm{w}^{(\mathrm{i})}=\operatorname{man} \mid \mathrm{t}^{(\mathrm{i})}=\mathrm{NN}\right) \ldots$
We only have to multiply the emission probability $\mathrm{P}\left(\mathrm{w}^{(\mathrm{i})} \mid \mathrm{t}_{\mathrm{j}}\right)$ with the probability of the best tag sequence that gets us to $t^{(i)}=t_{j}$

HMM independences

3. The current tag also determines the transition probability of the next tag:

$$
\ldots P\left(t^{(i+1)}=V B Z \mid t^{(i)}=N N\right) \ldots
$$

We cannot fix the current tag $\mathrm{t}^{(\mathrm{i})}$ based on the probability of getting to $t^{(i)}$ (and producing $w^{(i)}$)

We have to wait until we have reached the last word in the sequence.
Then, we can trace back to get the best tag sequence for the entire sentence.

HMM independences

2. Transition probabilities to the current tag $t^{(\mathrm{i})}$ depend only on the previous tag $\mathrm{t}^{(\mathrm{i}-1)}$:

$$
\ldots \mathrm{P}\left(\mathrm{t}^{(\mathrm{i})}=\mathrm{NN} \quad \mid \mathrm{t}^{(\mathrm{i}-1)}=\mathrm{DT}\right)
$$

-Assume the probability of the best tag sequence for the prefix $w^{(1)} \ldots \mathrm{w}^{(\mathrm{i}-1)}$ that ends in the tag $\mathrm{t}^{(\mathrm{i}-1)}=\mathrm{t}_{\mathrm{j}}$ is known, and stored in a variable max[i-1][j].
-To compute the probability of the best tag sequence for $w^{(1)} \ldots w^{(i-1)} w^{(i)}$ that ends in the tags $t^{(i-1)} \mathrm{t}^{(\mathrm{i})}=\mathbf{t}_{\mathbf{j}} \mathbf{t}_{\mathbf{k}}$, multiply max[$[\mathbf{i} 1][\mathrm{j}]$ with $P\left(\mathrm{t}_{\mathrm{k}} \mid \mathrm{t}_{\mathrm{j}}\right)$ and $\mathrm{P}\left(\mathrm{w}^{(\mathrm{i})} \mid \mathrm{t}_{\mathrm{k}}\right)$
-To compute the probability of the best tag sequence for $w^{(1)} \ldots w^{(i-1)} w^{(i)}$ that ends in $t^{(i)}=t_{k}$, consider all possible tags $t^{(i-1)}=\mathbf{t}_{\mathbf{j}}$ for the preceding word: $\boldsymbol{\operatorname { m a x }}[\mathbf{i}][\mathrm{k}]=\boldsymbol{\operatorname { m a x }}_{\mathbf{j}}\left(\boldsymbol{\operatorname { m a x }}[\mathbf{i}-1][\mathbf{j}] \mathrm{P}\left(\mathrm{t}_{\mathrm{k}} \mid \mathrm{t}_{\mathrm{j}}\right) \mathrm{P}\left(\mathrm{w}^{(\mathrm{i})} \mid \mathrm{t}_{\mathrm{k}}\right)\right.$

Using the trellis to find \mathbf{t}^{*}

Let trellis[i][j] (word $w^{(\mathrm{j})}$ and tag t_{j}) store the probability of the best tag sequence for $w^{(1)} \ldots w^{(i)}$ that ends in t_{j}
$\operatorname{trellis}[\mathrm{i}][\mathrm{j}]=\max P\left(\mathrm{w}^{(1)} \ldots \mathrm{w}^{(\mathrm{i})}, \mathrm{t}^{(1)} \ldots, \mathrm{t}^{(\mathrm{i})}=\mathrm{t}_{\mathrm{j}}\right)$
We can recursively compute trellis[i][j] from the entries in the previous column trellis[i-1][j]
$\operatorname{trellis}[\mathrm{i}][\mathrm{j}]=P\left(\mathrm{w}^{(\mathrm{i})} \mid \mathrm{t}_{\mathrm{j}}\right) \cdot \operatorname{Max}_{\mathrm{k}}\left(\operatorname{trellis}[\mathrm{i}-1][\mathrm{k}] P\left(\mathrm{t}_{\mathrm{j}} \mid \mathrm{t}_{\mathrm{k}}\right)\right)$
At the end of the sentence, we pick the highest scoring entry in the last column of the trellis

At any given cell

-For each cell in the preceding column: multiply its entry with the transition probability to the current cell.
-Keep a single backpointer to the best (highest scoring) cell in the preceding column
-Multiply this score with the emission probability of the current word

Retrieving $\mathbf{t}^{*}=\operatorname{argmax}_{\mathbf{t}} \mathrm{P}(\mathbf{t}, \mathbf{w})$

By keeping one backpointer from each cell to the cell in the previous column that yields the highest probability, we can retrieve the most likely tag sequence when we're done.

At the end of the sentence

In the last column (i.e. at the end of the sentence) pick the cell with the highest entry, and trace back the backpointers to the first word in the sentence.

The Viterbi algorithm

Viterbi $\left(w_{1} \ldots \mathrm{n}\right)$ \{
for $\mathrm{t}(1 . . . \mathrm{T})$ // INITIALIZATION: first column trellis $[1][\mathrm{t}]$. viterbi $=\mathrm{p}_{-}$init $[\mathrm{t}] \times \mathrm{p}_{-}$emit[t$]\left[\mathrm{w}_{1}\right]$ for $\mathrm{i}(2 \ldots \mathrm{n})$ \{ // RECURSION: every other column for $t(1 \ldots . \mathrm{T})\{$
trellis $[\mathrm{i}][\mathrm{t}]=0$
for $t^{\prime}(1 \ldots T)\{$
tmp $=$ trellis $[\mathrm{i}-1]\left[\mathrm{t}^{\prime}\right]$. .viterbi $\times \mathrm{p}$ _trans $\left[\mathrm{t}^{\prime}\right][\mathrm{t}]$
if ($\mathrm{tmp}>\operatorname{trellis}[\mathrm{i}][\mathrm{t}] . \mathrm{viterbi})\{$
trellis[i][t].viterbi $=\mathrm{tmp}$
trellis $[i][t]$.backpointer $\left.\left.=t^{\prime}\right\}\right\}$
trellis $[\mathrm{i}][\mathrm{t}]$.viterbi $\times=\mathrm{p} _$emit $\left.\left.[\mathrm{t}]\left[\mathrm{w}_{\mathrm{i}}\right]\right\}\right\}$
$t _\max =$ NULL, vit_max $=0$; // FINISH: find the best cell in the last column for $t(1 \ldots T)$
if (trellis[n][t].vit $>$ vit_max) $\left\{\mathrm{t} _\max =\mathrm{t}\right.$; vit_max $=\operatorname{trellis[n][\mathrm {t}].value\} }$
return unpack(n, t_max);
\}

Unpacking the trellis

```
unpack(n, t){
    i=n;
    tags = new array[n+1];
    while (i>0) {
        tags[i] = t;
        t= trellis[i][t].backpointer;
        i--;
    }
    return tags;
}
```


Trigram HMMs

In a Trigram HMM, transition probabilities are of the form:
$P\left(t^{(i)}=t^{i} \mid t^{(i-1)}=t_{j}, t^{(i-2)}=t_{k}\right)$
The i-th tag in the sequence influences the probabilities of the ($\mathbf{i}+1$)-th tag and the ($\mathrm{i}+2$)-th tag:
$\ldots \mathrm{P}\left(\mathrm{t}^{(\mathrm{i}+1)} \mid \mathrm{t}^{(\mathrm{i})}, \mathrm{t}^{(\mathrm{i}-1)}\right) \ldots \mathrm{P}\left(\mathrm{t}^{(\mathrm{i}+2)} \mid \mathrm{t}^{(\mathrm{i}+1)}, \mathrm{t}^{(\mathrm{i})}\right)$
Hence, each row in the trellis for a trigram HMM has to correspond to a pair of tags - the current and the preceding tag:
(abusing notation)
trellis[i] $\langle\mathrm{j}, \mathrm{k}\rangle$: word $\mathrm{w}^{(i)}$ has tag t_{j}, word $\mathrm{w}^{(i-1)}$ has tag t_{k}
The trellis now has T^{2} rows.
But we still need to consider only T transitions into each cell,
since the current word's tag is the next word's preceding tag:
Transitions are only possible from trellis $[\mathrm{i}] \mathrm{j}, \mathrm{k}\rangle$ to trellis $[\mathrm{i}+1 \mathrm{j} 1 \mathrm{l}, \mathrm{j}\rangle$

