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Recap: Statistical POS tagging
 
 
       she1  promised2  to3   back4  the5   bill6
w =   w1         w2         w3     w4      w5     w6  
  

t  =    t1          t2            t3       t4      t5        t6
        PRP1    VBD2      TO3   VB4   DT5   NN6

 
 
What is the most likely sequence of tags t 
for the given sequence of words w ? 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Statistical POS tagging with HMMs
What is the most likely sequence of tags t  
for the given sequence of words w ? 
 

Hidden Markov Models define P(t) and P(w|t) as:
 
Transition probabilities: 
    P(t) = ∏i P(ti | ti−1)               [bigram HMM]  
or P(t) = ∏i P(ti | ti−1, ti−2)       [trigram HMM]

Emission probabilities:  
     P(w | t) = ∏i P(wi | ti) 
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Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)
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HMMs as probabilistic automata
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A (bigram) HMM defines
Transition probabilities:

P( ti | ti-1) 
Emission probabilities:

P( wi | ti )
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HMMs as probabilistic automata
Transition probabilities P(ti | ti−1):
Probability of going from one state (ti−1) of the 
automaton to the next (ti)

“Markov model”: We’re making a Markov [independence] 
assumption for how to move between states of the automaton

 
Emission probabilities P(wi | ti):
Probability of emitting a symbol (wi) in a given state of 
the automaton (ti)

“Hidden Markov model”: The data that we see (at test time) 
consists only of the words w, and we find tags for w by 
searching for the most likely sequence of (hidden) states of the 
automaton (the tags t) that generated the data w
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An example HMM
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D N V A .
D 0.8 0.2
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
.

Transition Matrix A
the man ball throws sees red blue .

D 1
N 0.7 0.3
V 0.6 0.4
A 0.8 0.2
. 1

Emission Matrix B

D N V A .
π 1

Initial state vector π
D N

V

A

.
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!

Using HMMs for tagging
-The input to an HMM tagger is a sequence of words, w. 
The output is the most likely sequence of tags, t, for w. 

-For the underlying HMM model, w is a sequence of output 
symbols, and t is the most likely sequence of states (in the 
Markov chain) that generated w. 
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argmax
t

P( t⇤⇥�⌅
Outputtagger

| w⇤⇥�⌅
Inputtagger

) = argmax
t

P(w, t)
P(w)

= argmax
t

P(w, t)

= argmax
t

P( w⇤⇥�⌅
OutputHMM

| t⇤⇥�⌅
StatesHMM

)P( t⇤⇥�⌅
StatesHMM

)
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How would the 
automaton for a trigram 

HMM with transition probabilities 
P(ti | ti-2ti-1) look like?

 
What about unigrams   

     or n-grams?
???

???
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DT

JJ

NN VBZq0

Encoding a trigram model as FSA

JJ_DT

NN_DT

JJ

NN VBZDT<S>

DT_<S><S>

JJ_JJ

NN_JJ

VBZ_NN

NN_NN

Bigram model:
States = Tag Unigrams

Trigram model:
States = Tag Bigrams
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Trigram HMMs
In a trigram HMM tagger, each state qi corresponds 
to a POS tag bigram (the tags of the current and 
preceding word): qi=tjtk 

Emission probabilities depend only on the current 
POS tag: States tjtk and titk use the same emission 
probabilities P(wi | tk)
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Building an HMM tagger
To build an HMM tagger, we have to: 

-Train the model, i.e. estimate its parameters  
(the transition and emission probabilities)

  Easy case: we have a corpus labeled with POS tags  
  (supervised learning)  

-Define and implement a tagging algorithm that  
finds the best tag sequence t* for each input 
sentence w: 
 t* = argmaxt P(t)P(w | t) 
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Learning an HMM
Where do we get the transition probabilities P(tj | ti)  
(matrix A) and the emission probabilities P(wj | ti)  
(matrix B) from?

Case 1: We have a POS-tagged corpus.
- This is learning from labeled data, aka “supervised learning” 

 
 
 
Case 2: We have a raw (untagged) corpus and a tagset.
- This is learning from unlabeled data, aka “unsupervised learning”
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Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS 
old_JJ ,_, will_MD join_VB the_DT board_NN 
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 
29_CD ._.

Pierre Vinken , 61 years old , will 
join the board as a nonexecutive 
director Nov. 29 .

Tagset:
NNP: proper noun
CD: numeral,
JJ: adjective,...
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We count how often we see titj  and  wj_ti etc. in the data 
(use relative frequency estimates): 

Learning the transition probabilities:  
 
 
Learning the emission probabilities: 
 

We might use some smoothing, but this is pretty trivial…

Learning an HMM from labeled data
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P (tj |ti) =
C(titj)
C(ti)

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS 
old_JJ ,_, will_MD join_VB the_DT board_NN 
as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 
29_CD ._.

P (wj |ti) =
C(wj ti)

C(ti)
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Learning an HMM from unlabeled data
 
 
 
We can’t count anymore.  
We have to guess how often we’d expect to see titj  
etc. in our data set. Call this expected count C(...)
-Our estimate for the transition probabilities:  
 

-Our estimate for the emission probabilities: 
 
 

-We will talk about how to obtain these counts on Friday
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Pierre Vinken , 61 years old , will 
join the board as a nonexecutive 
director Nov. 29 .

Tagset:
NNP: proper noun
CD: numeral,
JJ: adjective,...

P̂ (tj |ti) =
�C(titj)⇥
�C(ti)⇥

P̂ (wj |ti) =
�C(wj ti)⇥
�C(ti)⇥
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Finding the best tag sequence
The number of possible tag sequences is 
exponential in the length of the input sentence: 

Each word can have up to T tags.
There are N words.
There are up to TN possible tag sequences. 

We cannot enumerate all TN possible tag sequences. 

But we can exploit the independence assumptions  
in the HMM to define an efficient algorithm that 
returns the tag sequence with the highest probability
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Dynamic 
Programming for 
HMMs 
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The three basic problems for HMMs
We observe an output sequence w=w1...wN: 

w=“she promised to back the bill” 

Problem I (Likelihood): find P(w | λ )
Given an HMM λ = (A, B, π), compute the likelihood  
of the observed output, P(w | λ )  

Problem II (Decoding): find Q=q1..qT 
Given an HMM λ = (A, B, π), what is the most likely sequence of 
states Q=q1..qN ≈ t1...tN  to generate w?  

Problem III (Estimation): find argmax λ P(w | λ )
Find the parameters A, B, π  which maximize P(w | λ)
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How can we solve these problems? 
I. Likelihood of the input w:

Compute P(w | λ ) for the input w and HMM λ  

II. Decoding (= tagging) the input w: 
Find the best tags t*=argmaxt P(t | w,λ) for the input w and HMM λ  

III. Estimation (= learning the model): 
Find the best model parameters λ*=argmax λ P(t, w | λ)  
for the training data w 

These look like hard problems: With T tags, every input string  
w1...n has Tn  possible tag sequences

Can we find efficient (polynomial-time) algorithms? 
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Dynamic programming
Dynamic programming is a general technique to solve 
certain complex search problems by memoization

1.) Recursively decompose the large search problem 
into smaller subproblems that can be solved efficiently

–There is only a polynomial number of subproblems. 

2.) Store (memoize) the solution of each subproblem  
in a common data structure

–Processing this data structure takes polynomial time
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Dynamic programming algorithms for HMMs
I. Likelihood of the input:
Compute P(w| λ ) for an input sentence w and HMM λ 
⇒ Forward algorithm  

II. Decoding (=tagging) the input: 
Find best tags t*=argmaxt P(t | w,λ) for an input sentence w and HMM λ 
⇒ Viterbi algorithm  

III. Estimation (=learning the model): 
Find best model parameters λ*=argmax λ P(t, w | λ) for training data w 
⇒ Forward-Backward algorithm
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Tags

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

Words (“time steps”)
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word w(i) has tag tj
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One tag sequence = one path through trellis
w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

�22

One path through the trellis = one tag sequence
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Computing P(t,w) for one tag sequence
w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

P(w(1)|q1)

P(w(2) | qj)

P(w(i) | qi)

P(t(1)=q1)

P(qj | q1)

P(qi | q...)

P(q..| qi)

P(w(i+1) | qi+1)

P(w(N) | qj)

P(qj | q..)
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One path through the trellis = one tag sequence
 
To get its probability, we just multiply the initial state 
and all emission and transition probabilities

CS447: Natural Language Processing (J. Hockenmaier)

The Viterbi algorithm
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Finding the best tag sequence
The number of possible tag sequences is exponential 
in the length of the input sentence:

Each word can have up to T tags.
There are N words.
There are up to TN possible tag sequences.

We cannot enumerate all TN possible tag sequences.

But we can exploit the independence assumptions  
in the HMM to define an efficient algorithm that 
returns the tag sequence with the highest probability 
in linear (O(N)) time.
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Notation: ti/wi vs t(i)/w(i)

To make the distinction between the i-th word/tag in 
the vocabulary/tag set and the i-th word/tag in the 
sentence clear: 

use superscript notation w(i) for the i-th token  
in the sequence  

and subscript notation wi for the i-th type  
in the inventory (tagset/vocabulary): 
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HMM decoding
We observe a sentence w = w(1)…w(N) 

 w= “she promised to back the bill” 
We want to use an HMM tagger to find its POS tags t

t* = argmaxt P(w, t)
    = argmaxt  P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

 
To do this efficiently, we will use  
dynamic programming to exploit  
the independence assumptions  
in the HMM.
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The Viterbi algorithm
A dynamic programming algorithm which finds the 
best (=most probable) tag sequence t* for an input 
sentence w: t* = argmaxt P(w | t)P(t)  

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these 
subproblems is the trellis.
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HMM independences
1. Emissions depend only on the current tag:

   … P(w(i) = man  | t(i) = NN )… 

We only have to multiply the emission probability 
P(w(i)  | tj )  with the probability of the best tag 
sequence that gets us to t(i) = tj 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HMM independences
2. Transition probabilities to the current tag t(i)  
depend only on the previous tag t(i−1):
     … P( t(i) = NN  | t(i−1) = DT ) 

-Assume the probability of the best tag sequence  
for the prefix w(1)…w(i−1)  that ends in the tag t(i−1) = tj  
is known, and stored in a variable max[i−1][j]. 
-To compute the probability of the best tag sequence  
for w(1)…w(i-1)w(i) that ends in the tags t(i-1)t(i) = tjtk,  
multiply max[i−1][j] with  P(tk | tj) and  P(w(i) | tk)

-To compute the probability of the best tag sequence  
for w(1)…w(i-1)w(i) that ends in t(i) = tk ,   
consider all possible tags t(i-1) = tj for the preceding word: 
max[i][k] = maxj ( max[i−1][j] P(tk | tj) )P(w(i) | tk)
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HMM independences
3. The current tag also determines the transition 
probability of the next tag: 

     … P( t(i+1) = VBZ  | t(i) = NN )…

We cannot fix the current tag t(i)  based on the 
probability of getting to t(i) (and producing w(i))

We have to wait until we have reached the last word 
in the sequence.
Then, we can trace back to get the best tag sequence 
for the entire sentence.

�31 CS447: Natural Language Processing (J. Hockenmaier)

Using the trellis to find t*
Let trellis[i][j] (word w(j) and tag tj) store the probability 
of the best tag sequence for w(1)…w(i) that ends in tj 

trellis[i][j] = max P(w(1)…w(i), t(1)…, t(i) = tj )

We can recursively compute trellis[i][j]  
from the entries in the previous column trellis[i-1][j]

trellis[i][j] =  P(w(i)| tj) ⋅Maxk( trellis[i-1][k]P(tj | tk) ) 

At the end of the sentence, we pick the highest 
scoring entry in the last column of the trellis
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At any given cell
-For each cell in the preceding column: multiply its entry with 
the transition probability to the current cell. 
-Keep a single backpointer to the best (highest scoring) cell in 
the preceding column
-Multiply this score with the emission probability of the current 
word
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w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)          
... ...
tN P(w(1..n-1), tn-1=ti)

P(ti |t1)

P(ti |ti)

P(ti |t
N)

trellis[n][i] =  
 P(w(n)|ti) 

⋅Max(trellis[n-1][j]P(ti |ti))
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At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the 
backpointers to the first word in the sentence.
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w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

q1

...

qj

...

qT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  
we can retrieve the most likely tag sequence when we’re done. 
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The Viterbi algorithm
Viterbi( w1…n){ 

for t (1...T)  // INITIALIZATION: first column  
   trellis[1][t].viterbi = p_init[t] × p_emit[t][w1] 
for i (2...n){  // RECURSION: every other column 
    for t (1....T){ 
        trellis[i][t] = 0 
        for t’ (1...T){  
             tmp = trellis[i-1][t’].viterbi × p_trans[t’][t] 
             if (tmp > trellis[i][t].viterbi){  
                  trellis[i][t].viterbi = tmp 
                  trellis[i][t].backpointer = t’}}  
        trellis[i][t].viterbi ×= p_emit[t][wi]}} 
t_max = NULL, vit_max = 0;  // FINISH: find the best cell in the last column 
for t (1...T) 
    if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value } 
return unpack(n, t_max); 
}
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Unpacking the trellis
unpack(n, t){ 

i = n; 
tags = new array[n+1]; 
while (i > 0){ 
   tags[i] = t; 
   t = trellis[i][t].backpointer; 
   i--; 
} 
return tags; 

}
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Today’s key concepts
HMM taggers
Learning HMMs from labeled text
Viterbi for HMMs

Dynamic programming
Independence assumptions in HMMs
The trellis
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Supplementary material:  
Viterbi for Trigram 
HMMs
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Trigram HMMs
In a Trigram HMM, transition probabilities are of the form:

P(t(i) = ti | t(i−1) = tj, t(i−2) = tk )  

The i-th tag in the sequence influences the probabilities  
of the (i+1)-th tag and the (i+2)-th tag:
 … P(t(i+1) | t(i), t(i−1)) … P(t(i+2) | t(i+1), t(i))

Hence, each row in the trellis for a trigram HMM has to 
correspond to a pair of tags — the current and the preceding tag: 

(abusing notation)  
trellis[i]⟨j,k⟩: word w(i) has tag tj, word w(i−1) has tag tk

The trellis now has T2 rows.  
But we still need to consider only T transitions into each cell,  
since the current word’s tag is the next word’s preceding tag:
Transitions are only possible from trellis[i]⟨j,k⟩ to trellis[i+1]⟨l,j⟩
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