Lecture 6:
HMM algorithms

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Recap: Statistical POS tagging

\[\begin{align*}
\text{she}_1 & \quad \text{promised}_2 & \quad \text{to}_3 & \quad \text{back}_4 & \quad \text{the}_5 & \quad \text{bill}_6 \\
\mathbf{w} &= & \mathbf{w}_1 & \quad \mathbf{w}_2 & \quad \mathbf{w}_3 & \quad \mathbf{w}_4 & \quad \mathbf{w}_5 & \quad \mathbf{w}_6 \\
\mathbf{t} &= & t_1 & \quad t_2 & \quad t_3 & \quad t_4 & \quad t_5 & \quad t_6 \\
\text{PRP}_1 & \quad \text{VBD}_2 & \quad \text{TO}_3 & \quad \text{VB}_4 & \quad \text{DT}_5 & \quad \text{NN}_6
\end{align*} \]

What is the most likely sequence of tags \(\mathbf{t} \) for the given sequence of words \(\mathbf{w} \)?
Statistical POS tagging with HMMs

What is the most likely sequence of tags \(t \) for the given sequence of words \(w \)？

\[
\arg\max_t P(t|w) = \arg\max_t P(t)P(w|t)
\]

Hidden Markov Models define \(P(t) \) and \(P(w|t) \) as:

Transition probabilities:

\[
P(t) = \prod_i P(t_i | t_{i-1}) \quad \text{[bigram HMM]}
\]

or

\[
P(t) = \prod_i P(t_i | t_{i-1}, t_{i-2}) \quad \text{[trigram HMM]}
\]

Emission probabilities:

\[
P(w | t) = \prod_i P(w_i | t_i)
\]
HMMs as probabilistic automata

A (bigram) HMM defines
Transition probabilities:
\[P(t_i | t_{i-1}) \]
Emission probabilities:
\[P(w_i | t_i) \]
HMMs as probabilistic automata

Transition probabilities $P(t_i \mid t_{i-1})$:
Probability of going from one state (t_{i-1}) of the automaton to the next (t_i)

"Markov model": We’re making a Markov [independence] assumption for how to move between states of the automaton

Emission probabilities $P(w_i \mid t_i)$:
Probability of emitting a symbol (w_i) in a given state of the automaton (t_i)

"Hidden Markov model": The data that we see (at test time) consists only of the words w, and we find tags for w by searching for the most likely sequence of (hidden) states of the automaton (the tags t) that generated the data w
An example HMM

Transition Matrix A

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>N</th>
<th>V</th>
<th>A</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.8</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.7</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.6</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Emission Matrix B

<table>
<thead>
<tr>
<th></th>
<th>the</th>
<th>man</th>
<th>ball</th>
<th>throws</th>
<th>sees</th>
<th>red</th>
<th>blue</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>0.7</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Initial state vector π

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>N</th>
<th>V</th>
<th>A</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows the states D, N, V, A, and the transitions between them.
Using HMMs for tagging

- The input to an HMM tagger is a sequence of words, \(w \). The output is the most likely sequence of tags, \(t \), for \(w \).

- For the underlying HMM model, \(w \) is a sequence of output symbols, and \(t \) is the most likely sequence of states (in the Markov chain) that generated \(w \).

\[
\arg\max_t P\left(t \mid w \right) = \arg\max_t \frac{P(w, t)}{P(w)} = \arg\max_t P(w, t) = \arg\max_t P\left(w \mid t \right) P\left(t \mid States_{HMM} \right)
\]
How would the automaton for a trigram HMM with transition probabilities $P(t_i \mid t_{i-2}t_{i-1})$ look like?

What about unigrams or n-grams?
Encoding a trigram model as FSA

Bigram model: States = Tag Unigrams
Trigram model: States = Tag Bigrams
Trigram HMMs

In a **trigram HMM tagger**, each state q_i corresponds to a POS tag bigram (the tags of the current and preceding word): $q_i = t_j t_k$

Emission probabilities depend only on the current POS tag: States $t_j t_k$ and $t_i t_k$ use the same emission probabilities $P(w_i | t_k)$
Building an HMM tagger

To build an HMM tagger, we have to:

- **Train** the model, i.e. estimate its parameters (the transition and emission probabilities)
 Easy case: we have a corpus labeled with POS tags (supervised learning)

- Define and implement a **tagging algorithm** that finds the best tag sequence t^* for each input sentence w:
 $t^* = \arg\max_t P(t)P(w \mid t)$
Learning an HMM

Where do we get the transition probabilities $P(t_j | t_i)$ (matrix A) and the emission probabilities $P(w_j | t_i)$ (matrix B) from?

Case 1: We have a POS-tagged corpus.
- This is learning from labeled data, aka “supervised learning”

```
Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_, will_MD join_VB the_DT board_NN as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD __.
```

Case 2: We have a raw (untagged) corpus and a tagset.
- This is learning from unlabeled data, aka “unsupervised learning”

```
Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .
```

Tagset:
NNP: proper noun
CD: numeral,
JJ: adjective,...
Learning an HMM from *labeled* data

We count how often we see $t_i t_j$ and $w_j t_i$ etc. in the data (use relative frequency estimates):

Learning the transition probabilities:

$$P(t_j | t_i) = \frac{C(t_i t_j)}{C(t_i)}$$

Learning the emission probabilities:

$$P(w_j | t_i) = \frac{C(w_j t_i)}{C(t_i)}$$

We might use some smoothing, but this is pretty trivial…
Learning an HMM from *unlabeled* data

We can’t count anymore.
We have to *guess* how often we’d *expect* to see \(\hat{t}_i t_j \) *etc.* in our data set. Call this expected count \(\langle C(...) \rangle \)

- Our estimate for the transition probabilities:

\[
\hat{P}(t_j|t_i) = \frac{\langle C(t_i t_j) \rangle}{\langle C(t_i) \rangle}
\]

- Our estimate for the emission probabilities:

\[
\hat{P}(w_j|t_i) = \frac{\langle C(w_j_t_i) \rangle}{\langle C(t_i) \rangle}
\]

- We will talk about how to obtain these counts on Friday
Finding the best tag sequence

The **number of possible tag sequences** is **exponential** in the length of the input sentence:

Each word can have up to \(T \) tags.
There are \(N \) words.
There are up to \(T^N \) possible tag sequences.

We **cannot enumerate** all \(T^N \) possible tag sequences.

But we can exploit the **independence assumptions** **in the HMM** to define an efficient algorithm that returns the tag sequence with the highest probability.
Dynamic Programming for HMMs
The three basic problems for HMMs

We observe an output sequence $w=w_1...w_N$:

$w=“she promised to back the bill”$

Problem I (Likelihood): find $P(w \mid \lambda)$

Given an HMM $\lambda=(A, B, \pi)$, compute the likelihood of the observed output, $P(w \mid \lambda)$

Problem II (Decoding): find $Q=q_1..q_T$

Given an HMM $\lambda=(A, B, \pi)$, what is the most likely sequence of states $Q=q_1..q_N \approx t_1...t_N$ to generate w?

Problem III (Estimation): find $\arg\max_\lambda P(w \mid \lambda)$

Find the parameters A, B, π which maximize $P(w \mid \lambda)$
How can we solve these problems?

I. Likelihood of the input w:
Compute $P(w | \lambda)$ for the input w and HMM λ

II. Decoding (= tagging) the input w:
Find the best tags $t^* = \arg\max_t P(t | w, \lambda)$ for the input w and HMM λ

III. Estimation (= learning the model):
Find the best model parameters $\lambda^* = \arg\max_\lambda P(t, w | \lambda)$ for the training data w

These look like hard problems: With T tags, every input string $w_1...n$ has T^n possible tag sequences
Can we find efficient (polynomial-time) algorithms?
Dynamic programming

Dynamic programming is a general technique to solve certain complex search problems by memoization

1.) Recursively decompose the large search problem into smaller subproblems that can be solved efficiently
 —There is only a polynomial number of subproblems.

2.) Store (memoize) the solution of each subproblem in a common data structure
 —Processing this data structure takes polynomial time
Dynamic programming algorithms for HMMs

I. Likelihood of the input:
Compute $P(w | \lambda)$ for an input sentence w and HMM λ
⇒ Forward algorithm

II. Decoding (=tagging) the input:
Find best tags $t^* = \arg\max_t P(t | w, \lambda)$ for an input sentence w and HMM λ
⇒ Viterbi algorithm

III. Estimation (=learning the model):
Find best model parameters $\lambda^* = \arg\max_\lambda P(t, w | \lambda)$ for training data w
⇒ Forward-Backward algorithm
We use a $N \times T$ table ("trellis") to keep track of the HMM. The HMM can assign one of the T tags to each of the N words.
One tag sequence = one path through trellis

\[w^{(1)} \quad w^{(2)} \quad \ldots \quad w^{(i-1)} \quad w^{(i)} \quad w^{(i+1)} \quad \ldots \quad w^{(N-1)} \quad w^{(N)} \]

\[q_1 \quad q_j \quad q_T \]

One path through the trellis = one tag sequence
Computing \(P(t, w) \) for one tag sequence

\[
\begin{array}{cccccccc}
\text{q}_1 & w^{(1)} & w^{(2)} & \ldots & w^{(i-1)} & w^{(i)} & w^{(i+1)} & \ldots & w^{(N-1)} & w^{(N)} \\
\text{q}_1 & P(w^{(1)}|q_1) & & & & & & & & \\
\vdots & & & & & & & & & & \\
\text{q}_j & P(w^{(2)}|q_j) & P(q_i|q_j) & & P(w^{(i)}|q_i) & & & & & \\
\vdots & & & & & P(q_i|q_{..}) & & & & \\
\text{q}_T & & & & & & P(w^{(i+1)}|q_{i+1}) & & & & \\
\end{array}
\]

One path through the trellis = one tag sequence

To get its probability, we just multiply the initial state and all emission and transition probabilities.
The Viterbi algorithm
Finding the best tag sequence

The number of *possible* tag sequences is exponential in the length of the input sentence:

Each word can have up to T tags.
There are N words.
There are up to T^N possible tag sequences.

We cannot enumerate all T^N possible tag sequences.

But we can exploit the independence assumptions in the HMM to define an efficient algorithm that returns the tag sequence with the highest probability in linear ($O(N)$) time.
Notation: t_i/w_i vs $t^{(i)}/w^{(i)}$

To make the distinction between the i-th word/tag in the vocabulary/tag set and the i-th word/tag in the sentence clear:

use **superscript notation** $w^{(i)}$ for the i-th **token** in the sequence

and **subscript notation** w_i for the i-th **type** in the inventory (tagset/vocabulary):
HMM decoding

We observe a sentence $w = w^{(1)} \ldots w^{(N)}$

\[
 w = \text{“she promised to back the bill”}
\]

We want to use an HMM tagger to find its POS tags t

\[
 t^* = \arg\max_t P(w, t) \\
 = \arg\max_t P(t^{(1)}) \cdot P(w^{(1)}| t^{(1)}) \cdot P(t^{(2)}| t^{(1)}) \cdot \ldots \cdot P(w^{(N)}| t^{(N)})
\]

To do this efficiently, we will use **dynamic programming** to exploit the **independence assumptions** in the HMM.
The Viterbi algorithm

A dynamic programming algorithm which finds the best (=most probable) tag sequence t^* for an input sentence w: $t^* = \operatorname{argmax}_t P(w \mid t)P(t)$

Complexity: linear in the sentence length. With a bigram HMM, Viterbi runs in $O(T^2N)$ steps for an input sentence with N words and a tag set of T tags.

The independence assumptions of the HMM tell us how to break up the big search problem (find $t^* = \operatorname{argmax}_t P(w \mid t)P(t)$) into smaller subproblems.

The data structure used to store the solution of these subproblems is the trellis.
HMM independences

1. **Emissions** depend only on the current tag:
 \[P(w^{(i)} = \text{man} \mid t^{(i)} = \text{NN}) \]

We only have to multiply the emission probability \(P(w^{(i)} \mid t_j) \) with the probability of the **best tag sequence** that gets us to \(t^{(i)} = t_j \)
HMM independences

2. Transition probabilities to the current tag \(t(i) \) depend only on the previous tag \(t(i-1) \):

\[
\ldots P(t(i) = \text{NN} \mid t(i-1) = \text{DT})
\]

- Assume the **probability of the best tag sequence for the prefix** \(w^{(1)} \ldots w^{(i-1)} \) **that ends in the tag** \(t(i-1) = t_j \) is known, and stored in a variable \(\text{max[i-1][j]} \).

- To compute the **probability of the best tag sequence for** \(w^{(1)} \ldots w^{(i-1)} w(i) \) **that ends in the tags** \(t(i-1)t(i) = t_jt_k \), multiply \(\text{max[i-1][j]} \) with \(P(t_k \mid t_j) \) and \(P(w(i) \mid t_k) \).

- To compute the **probability of the best tag sequence for** \(w^{(1)} \ldots w^{(i-1)} w(i) \) **that ends in** \(t(i) = t_k \), consider all possible tags \(t(i-1) = t_j \) for the preceding word:

\[
\text{max}[i][k] = \max_j \left(\text{max}[i-1][j] \cdot P(t_k \mid t_j) \cdot P(w(i) \mid t_k) \right)
\]
HMM independences

3. The **current tag** also determines the transition probability of the **next tag**:

... \(P(t^{(i+1)} = \text{VBZ} \mid t^{(i)} = \text{NN}) \)...

We cannot fix the current tag \(t^{(i)} \) based on the probability of getting to \(t^{(i)} \) (and producing \(w^{(i)} \))

We have to wait until we have reached the last word in the sequence. Then, we can trace back to get the best tag sequence for the entire sentence.
Using the trellis to find t^*

Let $\text{trellis}[i][j]$ (word $w^{(i)}$ and tag t_j) store the probability of the best tag sequence for $w^{(1)} \ldots w^{(i)}$ that ends in t_j

$$\text{trellis}[i][j] = \max P(w^{(1)} \ldots w^{(i)}, t^{(1)} \ldots, t^{(i)} = t_j)$$

We can recursively compute $\text{trellis}[i][j]$ from the entries in the previous column $\text{trellis}[i-1][j]$

$$\text{trellis}[i][j] = P(w^{(i)}| t_j) \cdot \max_k(\text{trellis}[i-1][k]P(t_j | t_k)$$

At the end of the sentence, we pick the highest scoring entry in the last column of the trellis
At any given cell

- For each cell in the preceding column: multiply its entry with the transition probability to the current cell.
- Keep a single backpointer to the best (highest scoring) cell in the preceding column
- Multiply this score with the emission probability of the current word

\[
\text{trellis}[n][i] = P(w^{(n)}|t_i) \cdot \max \{\text{trellis}[n-1][j]P(t_i | t_i)\}
\]
At the end of the sentence

In the last column (i.e. at the end of the sentence) pick the cell with the highest entry, and trace back the backpointers to the first word in the sentence.
Retrieving $t^* = \arg\max_t P(t,w)$

By keeping **one backpointer** from each cell to the cell in the previous column that yields the highest probability, we can retrieve the most likely tag sequence when we’re done.
The Viterbi algorithm

\begin{verbatim}
Viterbi(w_1...n) {
 for t (1...T) // INITIALIZATION: first column
 trellis[1][t].viterbi = p_init[t] × p_emit[t][w_1]
 for i (2...n){ // RECURSION: every other column
 for t (1...T){
 trellis[i][t] = 0
 for t' (1...T){
 tmp = trellis[i-1][t'].viterbi × p_trans[t'][t]
 if (tmp > trellis[i][t].viterbi){
 trellis[i][t].viterbi = tmp
 trellis[i][t].backpointer = t'}
 trellis[i][t].viterbi ×= p_emit[t][w_i]}
 t_max = NULL, vit_max = 0; // FINISH: find the best cell in the last column
 for t (1...T)
 if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value }
 return unpack(n, t_max);
 }
}
\end{verbatim}
Unpacking the trellis

```plaintext
unpack(n, t) {
    i = n;
    tags = new array[n+1];
    while (i > 0) {
        tags[i] = t;
        t = trellis[i][t].backpointer;
        i--;
    }
    return tags;
}
```
Today’s key concepts

HMM taggers
Learning HMMs from labeled text
Viterbi for HMMs
 Dynamic programming
 Independence assumptions in HMMs
 The trellis
Supplementary material: Viterbi for Trigram HMMs
Trigram HMMs

In a Trigram HMM, transition probabilities are of the form:
\[
P(t^{(i)} = t | t^{(i-1)} = t_j, t^{(i-2)} = t_k)
\]

The i-th tag in the sequence influences the probabilities of the (i+1)-th tag and the (i+2)-th tag:
\[
... P(t^{(i+1)} | t^{(i)}, t^{(i-1)}) ... P(t^{(i+2)} | t^{(i+1)}, t^{(i)})
\]

Hence, each row in the trellis for a trigram HMM has to correspond to a pair of tags — the current and the preceding tag:

(abusing notation)
\[
trellis[i] \langle j, k \rangle: \text{word } w^{(i)} \text{ has tag } t_j, \text{ word } w^{(i-1)} \text{ has tag } t_k
\]

The trellis now has T^2 rows.

But we still need to consider only T transitions into each cell, since the current word’s tag is the next word’s preceding tag:

Transitions are only possible from $trellis[i] \langle j, k \rangle$ to $trellis[i+1] \langle l, j \rangle$