
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447 

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 4:  
Smoothing
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Last lecture’s key concepts
Basic probability review:

joint probability, conditional probability 

Probability models
Independence assumptions
Parameter estimation: relative frequency estimation  
(aka maximum likelihood estimation)

Language models

N-gram language models: 
unigram, bigram, trigram…
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N-gram language models
A language model is a distribution P(W)  
over the (infinite) set of strings in a language L   

To define a distribution over this infinite set,  
we have to make independence assumptions. 

N-gram language models assume that each word wi 
depends only on the n−1 preceding words: 

Pn-gram(w1 … wT)   := ∏i=1..T P(wi | wi−1, …, wi−(n−1))  

Punigram(w1 … wT)  := ∏i=1..T P(wi)
Pbigram(w1 … wT)   := ∏i=1..T  P(wi | wi−1)
Ptrigram(w1 … wT)   := ∏i=1..T  P(wi | wi−1, wi−2)
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Quick note re. notation
Consider the sentence W = “John loves Mary” 

For a trigram model we could write:
     P(w3 = Mary | w1 w2 = “John loves” )

This notation implies that we treat the preceding bigram w1w2 
as one single conditioning variable P( X | Y )  

Instead, we typically write:
    P(w3 = Mary | w2 = loves, w1 = John)

Although this is less readable (John loves → loves, John),
this notation gives us more flexibility, since it implies that we 
treat the preceding bigram w1w2 as two conditioning variables 
P( X | Y, Z )
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Parameter estimation (training)
Parameters: the actual probabilities (numbers)

 P(wi = ‘the’ | wi-1 = ‘on’) = 0.0123 

We need (a large amount of) text as training data  
to estimate the parameters of a language model. 

The most basic estimation technique: 
relative frequency estimation (= counts)

 P(wi = ‘the’ | wi-1 = ‘on’) =  C(‘on the’) / C(‘on’) 
This assigns all probability mass to events  
in the training corpus.

Also called Maximum Likelihood Estimation (MLE) 
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Recall the Shakespeare example: 

Only 30,000 word types occurred. 
Any word that does not occur in the training data  
has zero probability!

Only 0.04% of all possible bigrams occurred. 
Any bigram that does not occur in the training data  
has zero probability! 

Testing: unseen events will occur
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Zipf’s law: the long tail
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In natural language:
-A small number of events (e.g. words) occur with high frequency
-A large number of events occur with very low frequency
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A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times? 

the r-th most 
common word wr  
has P(wr) ∝ 1/r

CS447: Natural Language Processing (J. Hockenmaier)

So…. 
… we can’t actually evaluate our MLE models on 
unseen test data (or system output)…

… because both are likely to contain words/n-grams 
that these models assign zero probability to.

We need language models that assign some 
probability mass to unseen words and n-grams. 
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How can we design language models*  
that can deal with previously unseen events?  

*actually, probabilistic models in general

Today’s lecture
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P(seen)
= 1.0

???
P(seen)

< 1.0

P(unseen)
> 0.0

MLE model Smoothed model
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Dealing with unseen events
Relative frequency estimation assigns all probability 
mass to events in the training corpus  

But we need to reserve some probability mass to 
events that don’t occur in the training data

Unseen events = new words, new bigrams 

Important questions:
What possible events are there? 
How much probability mass should they get?
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What unseen events may occur?
Simple distributions: 

P(X = x)  
(e.g. unigram models)  

Possibility:  
The outcome x has not occurred during training  
(i.e. is unknown):
-We need to reserve mass in P( X ) for x

 
Questions: 
-What outcomes x are possible? 
-How much mass should they get?
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What unseen events may occur?
Simple conditional distributions:

P( X = x | Y = y) 
(e.g. bigram models) 

Case 1: The outcome x has been seen,  
but not in the context of Y = y: 
-We need to reserve mass in P( X | Y=y ) for X = x 

Case 2: The conditioning variable y has not been seen: 
-We have no P( X | Y = y ) distribution.
-We need to drop the conditioning variable Y = y  
and use P( X ) instead.
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What unseen events may occur?
Complex conditional distributions  
(with multiple conditioning variables) 

P( X = x | Y = y, Z = z) 
(e.g. trigram models)
 
Case 1: The outcome X = x was seen, but not in the 
context of (Y=y, Z=z):
-We need to reserve mass in P( X | Y = y, Z = z)  

Case 2: The joint conditioning event (Y=y, Z=z) hasn’t 
been seen:

- We have no P( X | Y=y, Z=z) distribution.
- But we can drop z and use P( X | Y=y) instead. 
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Examples
Training data: The wolf is an endangered species 
Test data:       The wallaby is endangered  
 
 
 
 
 
 

-Case 1: P(wallaby), P(wallaby | the), P( wallaby | the, <s>):  
What is the probability of an unknown word (in any context)? 

-Case 2: P(endangered | is)  
What is the probability of a known word in a known context,  
if that word hasn’t been seen in that context?

-Case 3: P(is | wallaby) P(is | wallaby, the) P(endangered | is, wallaby):  
What is the probability of a known word in an unseen context?
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Unigram Bigram Trigram
P(the) P(the | <s>) P(the | <s>)
× P(wallaby) × P( wallaby | the) × P( wallaby | the, <s>)
× P(is) × P(is | wallaby) × P(is | wallaby, the)
× P(endangered) × P(endangered | is) × P(endangered | is, wallaby)
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Smoothing: 
Reserving mass in  
P( X ) for unseen events
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Dealing with unknown words: 
The simple solution

Training:
-Assume a fixed vocabulary  
(e.g. all words that occur at least twice (or n times) in the 
corpus)
-Replace all other words by a token <UNK>
-Estimate the model on this corpus.

Testing:
-Replace all unknown words by <UNK>
-Run the model. 

This requires a large training corpus to work well.
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Use a different estimation technique:
-Add-1(Laplace) Smoothing
-Good-Turing Discounting
Idea: Replace MLE estimate
 
Combine a complex model with a simpler model:
-Linear Interpolation
-Modified Kneser-Ney smoothing
Idea: use bigram probabilities of wi                     
to calculate trigram probabilities of wi   

Dealing with unknown events

P (w) =
C(w)

N

P (wi|wi�n...wi�1)
P (wi|wi�1)
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MLE P(wi) =
C(wi)

� j C(w j)
=

C(wi)
N

Add One P(wi) =
C(wi)+1

� j(C(w j)+1)
=

C(wi)+1
N+V

Assume every (seen or unseen) event  
occurred once more than it did in the training data. 

Example: unigram probabilities 
Estimated from a corpus with N tokens and a 
vocabulary (number of word types) of size V.

Add-1 (Laplace) smoothing
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MLE P(wi) =
C(wi)

� j C(w j)
=

C(wi)
N

Add One P(wi) =
C(wi)+1

� j(C(w j)+1)
=

C(wi)+1
N+V
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Bigram counts
Original:

Smoothed:
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Bigram probabilities

Smoothed:

Original:

Problem:  
Add-one moves too much probability mass  
from seen to unseen events!
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We can “reconstitute” pseudo-counts c* for our 
training set of size N from our estimate: 

Unigrams: 
 
 
 
 

Bigrams:

Reconstituting the counts

c⇥i = P(wi) · N

=
C(wi)+1

N +V
· N

= (C(wi)+1) · N
N +V
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P(wi): probability that the next word is wi.  
N: number of word tokens we generate

Plug in the model definition of P(wi) 
V: size of vocabulary

Rearrange  
(to see dependence on N and V)

P(wi–1wi): probability of bigram “wi–1wi”.  
C(wi–1): frequency of wi–1 (in training data)

Plug in the model definition of P(wi | wi–1) 

c⇤(wi|wi�1) = P(wi|wi�1) ·C(wi�1)

=
C(wi�1wi)+1
C(wi�1)+V

·C(wi�1)
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Reconstituted Bigram counts
Original:

Reconstituted:
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Summary: Add-One smoothing

P (wi|wi�1 = the) =
C(the wi)+1

25, 545+30,000

Advantage:
Very simple to implement 

Disadvantage:
Takes away too much probability mass from seen events.
Assigns too much total probability mass to unseen events. 

The Shakespeare example  
(V = 30,000 word types;  ‘the’ occurs 25,545 times) 
Bigram probabilities for ‘the …’:
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Add-K smoothing
Variant of Add-One smoothing: 
For any k > 0  (typically, k < 1) 
 
 
 

This is still too simplistic to work well.
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Add K P(wi) =
C(wi)+ k

N + kV
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f = 1

f > 1

Good-Turing smoothing
Basic idea: Use total frequency of events that occur only once  
to estimate how much mass to shift to unseen events
- “occur only once” (in training data):  frequency f = 1 
- “unseen” (in training data): frequency f = 0 (didn’t occur)
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f = 0

f = 1

f > 1

Relative Frequency Estimate Good Turing Estimate
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MLE

f = 1

f > 1

P(seen) + P(unseen) = 1

MLE N
N

+ 0 = 1

Good Turing 2 · N2 + ...+m · Nm

�m
i=1 i · Ni

+
1 · N1

�m
i=1 i · Ni

= �m
i=1 i · Ni

�m
i=1 i · Ni

P(seen) + P(unseen) = 1

MLE N
N

+ 0 = 1

Good Turing 2 · N2 + ...+m · Nm

�m
i=1 i · Ni

+
1 · N1

�m
i=1 i · Ni

= �m
i=1 i · Ni

�m
i=1 i · Ni

Good-Turing smoothing

Nc: number of event types that occur c times (can be counted)
N1: number of event types that occur once
N = 1N1+…+ mNm: total number of observed event tokens
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GT

f=0

f = 1

f > 1
P(seen) + P(unseen) = 1

MLE N
N

+ 0 = 1

Good Turing 2 · N2 + ...+m · Nm

�m
i=1 i · Ni

+
1 · N1

�m
i=1 i · Ni

= �m
i=1 i · Ni

�m
i=1 i · Ni
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Good-Turing Smoothing
General principle: 
Reassign the probability mass of all events that occur  
k times in the training data to all events that occur k–1 times.
Nk events occur k times, with a total frequency of  k⋅Nk 

The probability mass of all words that appear k–1 times becomes: 
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There are Nk-1 words w that occur k–1 times in the training data.
Good-Turing replaces the original count ck–1 of w with a new count c*k–1:

c⇤k�1 =
k ·Nk

Nk�1

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N
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Good-Turing smoothing
The Maximum Likelihood estimate of the probability  
of a word w that occurs k–1 times PMLE(w) =  C(w)/N
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The Good-Turing estimate of the probability  
of a word w that occurs k–1 times: PGT(w) = c*k–1 / N:

PGT (w) =
c⇤k�1

N
=

✓
k·Nk
Nk�1

◆

N
=

k ·Nk

N ·Nk�1

PMLE(w) =
ck�1

N
=

k�1
N
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Problem 1:  
What happens to the most frequent event?  

Problem 2:  
We don’t observe events for every k. 

Variant: Simple Good-Turing
Replace Nn with a fitted function f(n): 
 

Requires parameter tuning (on held-out data):  
Set a,b so that f(n) ≅Nn for known values. 
Use cn* only for small n 

Problems with Good-Turing

f(n) = a + b log(n)
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Smoothing: 
Reserving mass in  
P(X |Y) for unseen events
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We don’t see “Bob was reading”, but we see “__ was reading”. 
We estimate P(reading |’Bob was’) = 0 but P(reading | ‘was’) > 0  

Use (n –1)-gram probabilities to smooth n-gram probabilities: 

Linear Interpolation (1)
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P( wi |wi−2wi−1 =’Bob was’)

P( wi |wi−1 =’was’)

P( wi |wi−2wi−1 = ’Bob was’)
1−λ

˜PLI(wi|wi�nwi�n+1

. . .wi�2

wi�1

)| {z }
smoothed n-gram

= l ˆP(wi|wi�nwi�n+1

. . .wi�2

wi�1

)| {z }
unsmoothed n-gram

+(1�l ) ˜PLI(wi|wi�n+1

. . .wi�2

wi�1

)| {z }
smoothed (n-1)-gram

λ
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What happens to P(w | …)? 
The smoothed probability Psmoothed-trigram(wi | wi−2 wi−1)  
is a linear combination of Punsmoothed-trigram(wi | wi−2 wi−1)  
and Pbigram(wi | wi−1):
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λ0 1
0

1

0

1

punsmoothed-trigram pbigram

psmoothed-trigram

λ0 1
0

1

0

1

punsmoothed-trigram pbigram

psmoothed-trigram



CS447: Natural Language Processing (J. Hockenmaier)

We’ve never seen “Bob was reading”,  
but we might have seen “__ was reading”,
and we’ve certainly seen “__ reading” (or <UNK>) 
 
 
 
 
 
 
 
 
 
Psmoothed(wi = reading | wi−1 = was, wi−2 = Bob) =  
λ3 Punsmoothed-trigram(wi = reading | wi−1 = was, wi−2 = Bob)  
+ λ2 Punsmoothed-bigram(wi = reading | wi−1 = was)  
+ λ1 Punsmoothed-unigram(wi = reading) 

Linear Interpolation (2)
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˜P(wi|wi�1

,wi�2

) =l
3

· ˆP(wi|wi�1

,wi�2

)

+l
2

· ˆP(wi|wi�1

)

+l
1

· ˆP(wi)

for l
1

+l
2

+l
3

= 1
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Interpolation: Setting the λs
Method A:  Held-out estimation

Divide data into training and held-out data. 
Estimate models on training data.
Use held-out data (and some optimization 
technique) to find the λ that gives best model 
performance. 
Often: λ is a learned function of the frequencies of 
wi–n…wi–1  

Method B:
 λ is some (deterministic) function of the frequencies 
of wi–n...wi–1 
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Subtract a constant factor D <1 from each nonzero n-gram count, 
and interpolate with PAD(wi | wi–1): 
 
 
 
 
 

If S seen word types occur after wi-2 wi-1 in the training data, this 
reserves the probability mass P(U) = (S ×D)/C(wi-2wi-1) to be computed 
according to P(wi | wi–1). Set: 
 

 
N.B.: with N1, N2 the number of n-grams that occur once or twice, D = N1/(N1+2N2) works 
well in practice

Absolute discounting
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(1�l ) = P(U) =
S ·D

C(wi�2wi�1)

PAD(wi|wi�1

,wi�2

) =
max(C(wi�2

wi�1

wi)�D,0)

C(wi�2

wi�1

)

+(1�l )PAD(wi|wi�1

)

non-zero if trigram 
wi-2wi-1wi is seen
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Kneser-Ney smoothing
Observation: “San Francisco” is frequent,  
but “Francisco” only occurs after “San”. 

Solution: the unigram probability P(w) should not depend on the 
frequency of w, but on the number of contexts in which w appears
 
N+1(●w): number of contexts in which w appears  
              = number of word types w’  which precede w 
N+1(●●) = ∑ w’ N+1(●w’)  

Kneser-Ney smoothing: Use absolute discounting,  
but use P(w) = N+1(●w)/N+1(●●)  
Modified Kneser-Ney smoothing: Use different D for bigrams and trigrams  
(Chen & Goodman ’98)

�36



CS447: Natural Language Processing (J. Hockenmaier)

To recap….
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Today’s key concepts
Dealing with unknown words
Dealing with unseen events
Good-Turing smoothing
Linear Interpolation
Absolute Discounting
Kneser-Ney smoothing

Today’s reading: 
Jurafsky and Martin, Chapter 4, sections 1-4
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