
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 4:
Smoothing

CS447: Natural Language Processing (J. Hockenmaier)

Last lecture’s key concepts
Basic probability review:

joint probability, conditional probability

Probability models
Independence assumptions
Parameter estimation: relative frequency estimation  
(aka maximum likelihood estimation)

Language models

N-gram language models:
unigram, bigram, trigram…

�2

CS447: Natural Language Processing (J. Hockenmaier)

N-gram language models
A language model is a distribution P(W)  
over the (infinite) set of strings in a language L  

To define a distribution over this infinite set,  
we have to make independence assumptions. 

N-gram language models assume that each word wi
depends only on the n−1 preceding words:

Pn-gram(w1 … wT) := ∏i=1..T P(wi | wi−1, …, wi−(n−1))  

Punigram(w1 … wT) := ∏i=1..T P(wi)
Pbigram(w1 … wT) := ∏i=1..T P(wi | wi−1)
Ptrigram(w1 … wT) := ∏i=1..T P(wi | wi−1, wi−2)

�3 CS447: Natural Language Processing (J. Hockenmaier)

Quick note re. notation
Consider the sentence W = “John loves Mary” 

For a trigram model we could write:
 P(w3 = Mary | w1 w2 = “John loves”)

This notation implies that we treat the preceding bigram w1w2
as one single conditioning variable P(X | Y)  

Instead, we typically write:
 P(w3 = Mary | w2 = loves, w1 = John)

Although this is less readable (John loves → loves, John),
this notation gives us more flexibility, since it implies that we
treat the preceding bigram w1w2 as two conditioning variables
P(X | Y, Z)

�4

CS447: Natural Language Processing (J. Hockenmaier)

Parameter estimation (training)
Parameters: the actual probabilities (numbers)

 P(wi = ‘the’ | wi-1 = ‘on’) = 0.0123 

We need (a large amount of) text as training data  
to estimate the parameters of a language model. 

The most basic estimation technique: 
relative frequency estimation (= counts)

 P(wi = ‘the’ | wi-1 = ‘on’) = C(‘on the’) / C(‘on’)
This assigns all probability mass to events  
in the training corpus.

Also called Maximum Likelihood Estimation (MLE)

�5 CS447: Natural Language Processing (J. Hockenmaier)

Recall the Shakespeare example:

Only 30,000 word types occurred. 
Any word that does not occur in the training data  
has zero probability!

Only 0.04% of all possible bigrams occurred. 
Any bigram that does not occur in the training data  
has zero probability!

Testing: unseen events will occur

�6

CS447: Natural Language Processing (J. Hockenmaier)

Zipf’s law: the long tail

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Fr
eq

ue
nc

y
(lo

g)

Number of words (log)

How many words occur N times?

W
or

d
fre

qu
en

cy
 (l

og
-s

ca
le

)

In natural language:
-A small number of events (e.g. words) occur with high frequency
-A large number of events occur with very low frequency

�7

A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times?

the r-th most
common word wr
has P(wr) ∝ 1/r

CS447: Natural Language Processing (J. Hockenmaier)

So….
… we can’t actually evaluate our MLE models on
unseen test data (or system output)…

… because both are likely to contain words/n-grams
that these models assign zero probability to.

We need language models that assign some
probability mass to unseen words and n-grams.

�8

CS447: Natural Language Processing (J. Hockenmaier)

How can we design language models*  
that can deal with previously unseen events?  

*actually, probabilistic models in general

Today’s lecture

�9

 
 

P(seen)
= 1.0

???
P(seen)

< 1.0

P(unseen)
> 0.0

MLE model Smoothed model

CS447: Natural Language Processing (J. Hockenmaier)

Dealing with unseen events
Relative frequency estimation assigns all probability
mass to events in the training corpus  

But we need to reserve some probability mass to
events that don’t occur in the training data

Unseen events = new words, new bigrams 

Important questions:
What possible events are there?
How much probability mass should they get?

�10

CS447: Natural Language Processing (J. Hockenmaier)

What unseen events may occur?
Simple distributions:

P(X = x)
(e.g. unigram models)  

Possibility:  
The outcome x has not occurred during training  
(i.e. is unknown):
-We need to reserve mass in P(X) for x

 
Questions:
-What outcomes x are possible?
-How much mass should they get?

�11 CS447: Natural Language Processing (J. Hockenmaier)

What unseen events may occur?
Simple conditional distributions:

P(X = x | Y = y)
(e.g. bigram models) 

Case 1: The outcome x has been seen,  
but not in the context of Y = y:
-We need to reserve mass in P(X | Y=y) for X = x 

Case 2: The conditioning variable y has not been seen:
-We have no P(X | Y = y) distribution.
-We need to drop the conditioning variable Y = y  
and use P(X) instead.

�12

CS447: Natural Language Processing (J. Hockenmaier)

What unseen events may occur?
Complex conditional distributions  
(with multiple conditioning variables)

P(X = x | Y = y, Z = z)
(e.g. trigram models)
 
Case 1: The outcome X = x was seen, but not in the
context of (Y=y, Z=z):
-We need to reserve mass in P(X | Y = y, Z = z)

Case 2: The joint conditioning event (Y=y, Z=z) hasn’t
been seen:

- We have no P(X | Y=y, Z=z) distribution.
- But we can drop z and use P(X | Y=y) instead.

�13 CS447: Natural Language Processing (J. Hockenmaier)

Examples
Training data: The wolf is an endangered species
Test data: The wallaby is endangered  
 
 
 
 
 
 

-Case 1: P(wallaby), P(wallaby | the), P(wallaby | the, <s>):  
What is the probability of an unknown word (in any context)?

-Case 2: P(endangered | is)  
What is the probability of a known word in a known context,  
if that word hasn’t been seen in that context?

-Case 3: P(is | wallaby) P(is | wallaby, the) P(endangered | is, wallaby):  
What is the probability of a known word in an unseen context?

�14

Unigram Bigram Trigram
P(the) P(the | <s>) P(the | <s>)
× P(wallaby) × P(wallaby | the) × P(wallaby | the, <s>)
× P(is) × P(is | wallaby) × P(is | wallaby, the)
× P(endangered) × P(endangered | is) × P(endangered | is, wallaby)

CS447: Natural Language Processing (J. Hockenmaier)

Smoothing:
Reserving mass in  
P(X) for unseen events

�15 CS447: Natural Language Processing (J. Hockenmaier)

Dealing with unknown words:
The simple solution

Training:
-Assume a fixed vocabulary  
(e.g. all words that occur at least twice (or n times) in the
corpus)
-Replace all other words by a token <UNK>
-Estimate the model on this corpus.

Testing:
-Replace all unknown words by <UNK>
-Run the model. 

This requires a large training corpus to work well.

�16

CS447: Natural Language Processing (J. Hockenmaier)

Use a different estimation technique:
-Add-1(Laplace) Smoothing
-Good-Turing Discounting
Idea: Replace MLE estimate
 
Combine a complex model with a simpler model:
-Linear Interpolation
-Modified Kneser-Ney smoothing
Idea: use bigram probabilities of wi  
to calculate trigram probabilities of wi

Dealing with unknown events

P (w) =
C(w)

N

P (wi|wi�n...wi�1)
P (wi|wi�1)

�17 CS447: Natural Language Processing (J. Hockenmaier)

MLE P(wi) =
C(wi)

� j C(w j)
=

C(wi)
N

Add One P(wi) =
C(wi)+1

� j(C(w j)+1)
=

C(wi)+1
N+V

Assume every (seen or unseen) event  
occurred once more than it did in the training data. 

Example: unigram probabilities
Estimated from a corpus with N tokens and a
vocabulary (number of word types) of size V.

Add-1 (Laplace) smoothing

�18

MLE P(wi) =
C(wi)

� j C(w j)
=

C(wi)
N

Add One P(wi) =
C(wi)+1

� j(C(w j)+1)
=

C(wi)+1
N+V

CS447: Natural Language Processing (J. Hockenmaier)

Bigram counts
Original:

Smoothed:

�19 CS447: Natural Language Processing (J. Hockenmaier)

Bigram probabilities

Smoothed:

Original:

Problem:  
Add-one moves too much probability mass  
from seen to unseen events!

�20

CS447: Natural Language Processing (J. Hockenmaier)

We can “reconstitute” pseudo-counts c* for our
training set of size N from our estimate: 

Unigrams: 
 
 
 
 

Bigrams:

Reconstituting the counts

c⇥i = P(wi) · N

=
C(wi)+1

N +V
· N

= (C(wi)+1) · N
N +V

�21

P(wi): probability that the next word is wi.  
N: number of word tokens we generate

Plug in the model definition of P(wi)
V: size of vocabulary

Rearrange  
(to see dependence on N and V)

P(wi–1wi): probability of bigram “wi–1wi”.  
C(wi–1): frequency of wi–1 (in training data)

Plug in the model definition of P(wi | wi–1)

c⇤(wi|wi�1) = P(wi|wi�1) ·C(wi�1)

=
C(wi�1wi)+1
C(wi�1)+V

·C(wi�1)

CS447: Natural Language Processing (J. Hockenmaier)

Reconstituted Bigram counts
Original:

Reconstituted:

�22

CS447: Natural Language Processing (J. Hockenmaier)

Summary: Add-One smoothing

P (wi|wi�1 = the) =
C(the wi)+1

25, 545+30,000

Advantage:
Very simple to implement 

Disadvantage:
Takes away too much probability mass from seen events.
Assigns too much total probability mass to unseen events. 

The Shakespeare example  
(V = 30,000 word types; ‘the’ occurs 25,545 times) 
Bigram probabilities for ‘the …’:

�23 CS447: Natural Language Processing (J. Hockenmaier)

Add-K smoothing
Variant of Add-One smoothing:
For any k > 0 (typically, k < 1) 
 
 
 

This is still too simplistic to work well.

�24

Add K P(wi) =
C(wi)+ k

N + kV

CS447: Natural Language Processing (J. Hockenmaier)

f = 1

f > 1

Good-Turing smoothing
Basic idea: Use total frequency of events that occur only once  
to estimate how much mass to shift to unseen events
- “occur only once” (in training data): frequency f = 1
- “unseen” (in training data): frequency f = 0 (didn’t occur)

�25

f = 0

f = 1

f > 1

Relative Frequency Estimate Good Turing Estimate

CS447: Natural Language Processing (J. Hockenmaier)

MLE

f = 1

f > 1

P(seen) + P(unseen) = 1

MLE N
N

+ 0 = 1

Good Turing 2 · N2 + ...+m · Nm

�m
i=1 i · Ni

+
1 · N1

�m
i=1 i · Ni

= �m
i=1 i · Ni

�m
i=1 i · Ni

P(seen) + P(unseen) = 1

MLE N
N

+ 0 = 1

Good Turing 2 · N2 + ...+m · Nm

�m
i=1 i · Ni

+
1 · N1

�m
i=1 i · Ni

= �m
i=1 i · Ni

�m
i=1 i · Ni

Good-Turing smoothing

Nc: number of event types that occur c times (can be counted)
N1: number of event types that occur once
N = 1N1+…+ mNm: total number of observed event tokens

�26

GT

f=0

f = 1

f > 1
P(seen) + P(unseen) = 1

MLE N
N

+ 0 = 1

Good Turing 2 · N2 + ...+m · Nm

�m
i=1 i · Ni

+
1 · N1

�m
i=1 i · Ni

= �m
i=1 i · Ni

�m
i=1 i · Ni

CS447: Natural Language Processing (J. Hockenmaier)

Good-Turing Smoothing
General principle: 
Reassign the probability mass of all events that occur  
k times in the training data to all events that occur k–1 times.
Nk events occur k times, with a total frequency of k⋅Nk

The probability mass of all words that appear k–1 times becomes:

�27

There are Nk-1 words w that occur k–1 times in the training data.
Good-Turing replaces the original count ck–1 of w with a new count c*k–1:

c⇤k�1 =
k ·Nk

Nk�1

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

Â
w:C(w)=k�1

PGT (w) = Â
w0:C(w0)=k

PMLE(w0) = Â
w0:C(w0)=k

k
N

=
k ·Nk

N

CS447: Natural Language Processing (J. Hockenmaier)

Good-Turing smoothing
The Maximum Likelihood estimate of the probability  
of a word w that occurs k–1 times PMLE(w) = C(w)/N

�28

The Good-Turing estimate of the probability  
of a word w that occurs k–1 times: PGT(w) = c*k–1 / N:

PGT (w) =
c⇤k�1

N
=

✓
k·Nk
Nk�1

◆

N
=

k ·Nk

N ·Nk�1

PMLE(w) =
ck�1

N
=

k�1
N

CS447: Natural Language Processing (J. Hockenmaier)

Problem 1:  
What happens to the most frequent event?  

Problem 2:  
We don’t observe events for every k. 

Variant: Simple Good-Turing
Replace Nn with a fitted function f(n): 
 

Requires parameter tuning (on held-out data):  
Set a,b so that f(n) ≅Nn for known values. 
Use cn* only for small n

Problems with Good-Turing

f(n) = a + b log(n)

�29 CS447: Natural Language Processing (J. Hockenmaier)

Smoothing:
Reserving mass in  
P(X |Y) for unseen events

�30

CS447: Natural Language Processing (J. Hockenmaier)

We don’t see “Bob was reading”, but we see “__ was reading”.
We estimate P(reading |’Bob was’) = 0 but P(reading | ‘was’) > 0  

Use (n –1)-gram probabilities to smooth n-gram probabilities:

Linear Interpolation (1)

�31

P(wi |wi−2wi−1 =’Bob was’)

P(wi |wi−1 =’was’)

P(wi |wi−2wi−1 = ’Bob was’)
1−λ

˜PLI(wi|wi�nwi�n+1

. . .wi�2

wi�1

)| {z }
smoothed n-gram

= l ˆP(wi|wi�nwi�n+1

. . .wi�2

wi�1

)| {z }
unsmoothed n-gram

+(1�l) ˜PLI(wi|wi�n+1

. . .wi�2

wi�1

)| {z }
smoothed (n-1)-gram

λ

CS447: Natural Language Processing (J. Hockenmaier)

What happens to P(w | …)?
The smoothed probability Psmoothed-trigram(wi | wi−2 wi−1)  
is a linear combination of Punsmoothed-trigram(wi | wi−2 wi−1)  
and Pbigram(wi | wi−1):

�32

λ0 1
0

1

0

1

punsmoothed-trigram pbigram

psmoothed-trigram

λ0 1
0

1

0

1

punsmoothed-trigram pbigram

psmoothed-trigram

CS447: Natural Language Processing (J. Hockenmaier)

We’ve never seen “Bob was reading”,  
but we might have seen “__ was reading”,
and we’ve certainly seen “__ reading” (or <UNK>) 
 
 
 
 
 
 
 
 
 
Psmoothed(wi = reading | wi−1 = was, wi−2 = Bob) =  
λ3 Punsmoothed-trigram(wi = reading | wi−1 = was, wi−2 = Bob)  
+ λ2 Punsmoothed-bigram(wi = reading | wi−1 = was)  
+ λ1 Punsmoothed-unigram(wi = reading)

Linear Interpolation (2)

�33

˜P(wi|wi�1

,wi�2

) =l
3

· ˆP(wi|wi�1

,wi�2

)

+l
2

· ˆP(wi|wi�1

)

+l
1

· ˆP(wi)

for l
1

+l
2

+l
3

= 1

CS447: Natural Language Processing (J. Hockenmaier)

Interpolation: Setting the λs
Method A: Held-out estimation

Divide data into training and held-out data. 
Estimate models on training data.
Use held-out data (and some optimization
technique) to find the λ that gives best model
performance.
Often: λ is a learned function of the frequencies of
wi–n…wi–1  

Method B:
 λ is some (deterministic) function of the frequencies
of wi–n...wi–1

�34

CS447: Natural Language Processing (J. Hockenmaier)

Subtract a constant factor D <1 from each nonzero n-gram count, 
and interpolate with PAD(wi | wi–1): 
 
 
 
 
 

If S seen word types occur after wi-2 wi-1 in the training data, this
reserves the probability mass P(U) = (S ×D)/C(wi-2wi-1) to be computed
according to P(wi | wi–1). Set: 
 

 
N.B.: with N1, N2 the number of n-grams that occur once or twice, D = N1/(N1+2N2) works
well in practice

Absolute discounting

�35

(1�l) = P(U) =
S ·D

C(wi�2wi�1)

PAD(wi|wi�1

,wi�2

) =
max(C(wi�2

wi�1

wi)�D,0)

C(wi�2

wi�1

)

+(1�l)PAD(wi|wi�1

)

non-zero if trigram
wi-2wi-1wi is seen

CS447: Natural Language Processing (J. Hockenmaier)

Kneser-Ney smoothing
Observation: “San Francisco” is frequent,  
but “Francisco” only occurs after “San”. 

Solution: the unigram probability P(w) should not depend on the
frequency of w, but on the number of contexts in which w appears
 
N+1(●w): number of contexts in which w appears  
 = number of word types w’ which precede w 
N+1(●●) = ∑ w’ N+1(●w’)  

Kneser-Ney smoothing: Use absolute discounting,  
but use P(w) = N+1(●w)/N+1(●●)  
Modified Kneser-Ney smoothing: Use different D for bigrams and trigrams  
(Chen & Goodman ’98)

�36

CS447: Natural Language Processing (J. Hockenmaier)

To recap….

�37 CS447: Natural Language Processing (J. Hockenmaier)

Today’s key concepts
Dealing with unknown words
Dealing with unseen events
Good-Turing smoothing
Linear Interpolation
Absolute Discounting
Kneser-Ney smoothing

Today’s reading:
Jurafsky and Martin, Chapter 4, sections 1-4

�38

