#### CS447: Natural Language Processing

http://courses.engr.illinois.edu/cs447

## Lecture 4: Smoothing

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

## Last lecture's key concepts

Basic probability review: joint probability, conditional probability

# Probability models Independence assumptions Parameter estimation: relative frequency estimation (aka maximum likelihood estimation)

Language models

N-gram language models: unigram, bigram, trigram...

## N-gram language models

A language model is a distribution P(W) over the (infinite) set of strings in a language L

To define a distribution over this infinite set, we have to make independence assumptions.

N-gram language models assume that each word widepends only on the n-1 preceding words:

```
P_{\text{n-gram}}(w_1 \dots w_T) := \prod_{i=1..T} P(w_i \mid w_{i-1}, \dots, w_{i-(n-1)})
P_{\text{unigram}}(w_1 \dots w_T) := \prod_{i=1..T} P(w_i)
P_{\text{bigram}}(w_1 \dots w_T) := \prod_{i=1..T} P(w_i \mid w_{i-1})
P_{\text{trigram}}(w_1 \dots w_T) := \prod_{i=1..T} P(w_i \mid w_{i-1}, w_{i-2})
```

### Quick note re. notation

Consider the sentence W = "John loves Mary"

#### For a trigram model we could write:

```
P(\mathbf{w}_3 = Mary \mid \mathbf{w}_1 \mathbf{w}_2 = "John loves")
```

This notation implies that we treat the preceding bigram  $w_1w_2$  as *one* single conditioning variable P(X | Y)

#### Instead, we typically write:

```
P(\mathbf{w}_3 = Mary \mid \mathbf{w}_2 = loves, \mathbf{w}_1 = John)
```

Although this is less readable (*John loves*  $\rightarrow$  *loves*, *John*), this notation gives us more flexibility, since it implies that we treat the preceding bigram  $w_1w_2$  as *two* conditioning variables P(X | Y, Z)

## Parameter estimation (training)

Parameters: the actual probabilities (numbers)

$$P(w_i = 'the' | w_{i-1} = 'on') = 0.0123$$

We need (a large amount of) text as training data to estimate the parameters of a language model.

The most basic estimation technique:

relative frequency estimation (= counts)

$$P(w_i = 'the' | w_{i-1} = 'on') = C('on the') / C('on')$$

This assigns *all* probability mass to events in the training corpus.

Also called Maximum Likelihood Estimation (MLE)

### Testing: unseen events will occur

Recall the Shakespeare example:

Only 30,000 word types occurred.

Any word that does not occur in the training data has zero probability!

Only 0.04% of all possible bigrams occurred. Any bigram that does not occur in the training data has zero probability!

## Zipf's law: the long tail

How many words occur once, twice, 100 times, 1000 times?



#### In natural language:

- -A small number of events (e.g. words) occur with high frequency
- A large number of events occur with very low frequency

### So....

... we can't actually evaluate our MLE models on unseen test data (or system output)...

... because both are likely to contain words/n-grams that these models assign zero probability to.

We need language models that assign some probability mass to unseen words and n-grams.

## Today's lecture

How can we design language models\* that can deal with previously unseen events?

\*actually, probabilistic models in general



## Dealing with unseen events

Relative frequency estimation assigns all probability mass to events in the training corpus

But we need to reserve *some* probability mass to events that don't occur in the training data

Unseen events = new words, new bigrams

#### Important questions:

What possible events are there?

How much probability mass should they get?

## What unseen events may occur?

#### Simple distributions:

$$P(X=x)$$

(e.g. unigram models)

#### **Possibility:**

The outcome *x* has not occurred during training (i.e. is unknown):

- We need to reserve mass in P(X) for x

#### **Questions:**

- What outcomes *x* are possible?
- How much mass should they get?

## What unseen events may occur?

#### Simple conditional distributions:

$$P(X = x \mid Y = y)$$

(e.g. bigram models)

**Case 1:** The outcome x has been seen, but not in the context of Y = y:

- We need to reserve mass in P(X | Y=y) for X=x

Case 2: The conditioning variable y has not been seen:

- We have no P(X | Y = y) distribution.
- We need to drop the conditioning variable Y = y and use P(X) instead.

## What unseen events may occur?

#### **Complex conditional distributions**

(with multiple conditioning variables)

$$P(X = x \mid Y = y, Z = z)$$

(e.g. trigram models)

**Case 1:** The outcome X = x was seen, but not in the context of (Y=y, Z=z):

- We need to reserve mass in P(X | Y = y, Z = z)

**Case 2:** The joint conditioning event (Y=y, Z=z) hasn't been seen:

- We have no P(X | Y=y, Z=z) distribution.
- But we can drop z and use P(X | Y=y) instead.

## Examples

Training data: The wolf is an endangered species

Test data: The wallaby is endangered

| Unigram         | Bigram               | Trigram                       |
|-----------------|----------------------|-------------------------------|
| P(the)          | P(the   <s>)</s>     | P(the   <s>)</s>              |
| × P(wallaby)    | × P( wallaby   the)  | × P( wallaby   the, <s>)</s>  |
| × P(is)         | × P(is   wallaby)    | × P(is   wallaby, the)        |
| × P(endangered) | × P(endangered   is) | × P(endangered   is, wallaby) |

- **-Case 1:** P(wallaby), P(wallaby | the), P( wallaby | the, <s>): What is the probability of an unknown word (in any context)?
- -Case 2: P(endangered | is)
  What is the probability of a known word in a known context, if that word hasn't been seen in that context?
- **-Case 3:** P(is | wallaby) P(is | wallaby, the) P(endangered | is, wallaby): What is the probability of a known word in an unseen context?

# Smoothing: Reserving mass in P(X) for unseen events

## Dealing with unknown words: The simple solution

#### Training:

- Assume a fixed vocabulary
   (e.g. all words that occur at least twice (or n times) in the corpus)
- -Replace all other words by a token <UNK>
- -Estimate the model on this corpus.

#### Testing:

- Replace all unknown words by <UNK>
- -Run the model.

This requires a large training corpus to work well.

## Dealing with unknown events

#### Use a different estimation technique:

- Add-1(Laplace) Smoothing
- -Good-Turing Discounting Idea: Replace MLE estimate  $P(w) = \frac{C(w)}{N}$

#### Combine a complex model with a simpler model:

- -Linear Interpolation
- Modified Kneser-Ney smoothing Idea: use bigram probabilities of  $w_i$   $P(w_i|w_{i-1})$ to calculate trigram probabilities of  $w_i$   $P(w_i|w_{i-n}...w_{i-1})$

## Add-1 (Laplace) smoothing

Assume every (seen or unseen) event occurred once more than it did in the training data.

#### **Example: unigram probabilities**

Estimated from a corpus with N tokens and a vocabulary (number of word types) of size V.

MLE 
$$P(w_i) = \frac{C(w_i)}{\sum_j C(w_j)} = \frac{C(w_i)}{N}$$
  
Add One  $P(w_i) = \frac{C(w_i) + \mathbf{1}}{\sum_j (C(w_j) + \mathbf{1})} = \frac{C(w_i) + \mathbf{1}}{N + \mathbf{V}}$ 

## Bigram counts

#### Original:

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

#### Smoothed:

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |

## Bigram probabilities

#### Original:

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

#### Smoothed:

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

#### **Problem:**

Add-one moves too much probability mass from seen to unseen events!

## Reconstituting the counts

We can "reconstitute" pseudo-counts  $c^*$  for our training set of size N from our estimate:

$$c_i^* = P(w_i) \cdot N$$
 $N:$  number of word tokens we generate

$$= \frac{C(w_i) + 1}{N + V} \cdot N$$
Plug in the model definition of  $P(w_i)$ 
 $V:$  size of vocabulary

$$= (C(w_i) + 1) \cdot \frac{N}{N + V}$$
Rearrange
(to see dependence on  $N$  and  $V$ )

#### Bigrams:

$$c^*(w_i|w_{i-1}) = P(w_i|w_{i-1}) \cdot C(w_{i-1})$$

 $P(w_{i-1}w_i)$ : probability of bigram " $w_{i-1}w_i$ ".

 $C(w_{i-1})$ : frequency of  $w_{i-1}$  (in training data)

$$= \frac{C(w_{i-1}w_i)+1}{C(w_{i-1})+V} \cdot C(w_{i-1})$$

Plug in the model definition of  $P(w_i | w_{i-1})$ 

## Reconstituted Bigram counts

#### Original:

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

#### Reconstituted:

|         | i    | want  | to    | eat   | chinese | food | lunch | spend |
|---------|------|-------|-------|-------|---------|------|-------|-------|
| i       | 3.8  | 527   | 0.64  | 6.4   | 0.64    | 0.64 | 0.64  | 1.9   |
| want    | 1.2  | 0.39  | 238   | 0.78  | 2.7     | 2.7  | 2.3   | 0.78  |
| to      | 1.9  | 0.63  | 3.1   | 430   | 1.9     | 0.63 | 4.4   | 133   |
| eat     | 0.34 | 0.34  | 1     | 0.34  | 5.8     | 1    | 15    | 0.34  |
| chinese | 0.2  | 0.098 | 0.098 | 0.098 | 0.098   | 8.2  | 0.2   | 0.098 |
| food    | 6.9  | 0.43  | 6.9   | 0.43  | 0.86    | 2.2  | 0.43  | 0.43  |
| lunch   | 0.57 | 0.19  | 0.19  | 0.19  | 0.19    | 0.38 | 0.19  | 0.19  |
| spend   | 0.32 | 0.16  | 0.32  | 0.16  | 0.16    | 0.16 | 0.16  | 0.16  |

## Summary: Add-One smoothing

#### Advantage:

Very simple to implement

#### Disadvantage:

Takes away too much probability mass from seen events. Assigns too much total probability mass to unseen events.

#### The Shakespeare example

(V = 30,000 word types; 'the' occurs 25,545 times) Bigram probabilities for 'the ...':

$$P(w_i|w_{i-1} = the) = \frac{C(the\ w_i)+1}{25,545+30,000}$$

## Add-K smoothing

Variant of Add-One smoothing: For any k > 0 (typically, k < 1)

Add K 
$$P(w_i) = \frac{C(w_i) + k}{N + kV}$$

This is still too simplistic to work well.

## Good-Turing smoothing

Basic idea: Use total frequency of events that occur only once to estimate how much mass to shift to unseen events

- "occur only once" (in training data): frequency f = 1
- "unseen" (in training data): frequency f = 0 (didn't occur)



Relative Frequency Estimate

**Good Turing Estimate** 

## Good-Turing smoothing



 $N_c$ : number of event types that occur c times (can be counted)

 $N_l$ : number of event types that occur once

 $N = 1N_1 + ... + mN_m$ : total number of observed event tokens

## **Good-Turing Smoothing**

#### General principle:

Reassign the probability mass of all events that occur k times in the training data to all events that occur k-1 times.

 $N_k$  events occur k times, with a total frequency of  $k \cdot N_k$ 

The probability mass of all words that appear k-1 times becomes:

$$\sum_{w:C(w)=k-1} P_{GT}(w) = \sum_{w':C(w')=k} P_{MLE}(w') = \sum_{w':C(w')=k} \frac{k}{N}$$

$$= \frac{k \cdot N_k}{N}$$

There are  $N_{k-1}$  words w that occur k-1 times in the training data.

Good-Turing replaces the original count  $c_{k-1}$  of w with a new count  $c*_{k-1}$ :

$$c_{k-1}^* = \frac{k \cdot N_k}{N_{k-1}}$$

## Good-Turing smoothing

The Maximum Likelihood estimate of the probability of a word w that occurs k-1 times  $P_{MLE}(w) = C(w)/N$ 

$$P_{MLE}(w) = \frac{c_{k-1}}{N} = \frac{k-1}{N}$$

The Good-Turing estimate of the probability of a word w that occurs k-1 times:  $P_{GT}(w) = c*_{k-1} / N$ :

$$P_{GT}(w) = \frac{c_{k-1}^*}{N} = \frac{\left(\frac{k \cdot N_k}{N_{k-1}}\right)}{N} = \frac{k \cdot N_k}{N \cdot N_{k-1}}$$

## Problems with Good-Turing

#### Problem 1:

What happens to the most frequent event?

#### Problem 2:

We don't observe events for every k.

#### **Variant: Simple Good-Turing**

Replace  $N_n$  with a fitted function f(n):

$$f(n) = a + b\log(n)$$

Requires parameter tuning (on held-out data):

Set a,b so that  $f(n) \cong N_n$  for known values.

Use  $c_n^*$  only for small n

## Smoothing: Reserving mass in P(X|Y) for unseen events

## Linear Interpolation (1)

We don't see "Bob was reading", but we see "\_\_ was reading". We estimate  $P(reading \mid `Bob was') = 0$  but  $P(reading \mid `was') > 0$ 

Use (n-1)-gram probabilities to smooth n-gram probabilities:



## What happens to $P(w \mid ...)$ ?

The smoothed probability  $P_{\text{smoothed-trigram}}(w_i \mid w_{i-2} w_{i-1})$  is a linear combination of  $P_{\text{unsmoothed-trigram}}(w_i \mid w_{i-2} w_{i-1})$  and  $P_{\text{bigram}}(w_i \mid w_{i-1})$ :



## Linear Interpolation (2)

We've never seen "Bob was reading", but we might have seen "\_\_ was reading", and we've certainly seen "\_\_ reading" (or <UNK>)

$$\tilde{P}(w_i|w_{i-1}, w_{i-2}) = \lambda_3 \cdot \hat{P}(w_i|w_{i-1}, w_{i-2}) + \lambda_2 \cdot \hat{P}(w_i|w_{i-1}) + \lambda_1 \cdot \hat{P}(w_i)$$
for  $\lambda_1 + \lambda_2 + \lambda_3 = 1$ 

```
P_{\text{smoothed}}(\mathbf{w_i} = reading \mid \mathbf{w_{i-1}} = was, \mathbf{w_{i-2}} = Bob) = \lambda_3 P_{\text{unsmoothed-trigram}}(\mathbf{w_i} = reading \mid \mathbf{w_{i-1}} = was, \mathbf{w_{i-2}} = Bob) + \lambda_2 P_{\text{unsmoothed-bigram}}(\mathbf{w_i} = reading \mid \mathbf{w_{i-1}} = was) + \lambda_1 P_{\text{unsmoothed-unigram}}(\mathbf{w_i} = reading)
```

## Interpolation: Setting the λs

#### **Method A: Held-out estimation**

Divide data into training and held-out data.

Estimate models on training data.

Use held-out data (and some optimization technique) to find the  $\lambda$  that gives best model performance.

Often:  $\lambda$  is a learned function of the frequencies of

$$W_{i-n} \dots W_{i-1}$$

#### **Method B:**

 $\lambda$  is some (deterministic) function of the frequencies of  $w_{i-n}...w_{i-1}$ 

## Absolute discounting

Subtract a constant factor D < 1 from each nonzero n-gram count,

and interpolate with  $P_{AD}(w_i \mid w_{i-1})$ :

non-zero if trigram  $w_{i-2}w_{i-1}w_i$  is seen

$$P_{AD}(w_i|w_{i-1},w_{i-2}) = \frac{\max(C(w_{i-2}w_{i-1}w_i) - D,0)}{C(w_{i-2}w_{i-1})} + (1-\lambda)P_{AD}(w_i|w_{i-1})$$

If S seen word types occur after  $w_{i-2} w_{i-1}$  in the training data, this reserves the probability mass  $P(U) = (S \times D)/C(w_{i-2}w_{i-1})$  to be computed according to  $P(w_i | w_{i-1})$ . Set:

$$(1-\lambda) = P(U) = \frac{S \cdot D}{C(w_{i-2}w_{i-1})}$$

N.B.: with  $N_1$ ,  $N_2$  the number of *n*-grams that occur once or twice,  $D = N_1/(N_1 + 2N_2)$  works well in practice

## Kneser-Ney smoothing

**Observation:** "San Francisco" is frequent, but "Francisco" only occurs after "San".

**Solution:** the unigram probability P(w) should not depend on the frequency of w, but on the number of contexts in which w appears

 $N_{+I}(\bullet w)$ : number of contexts in which w appears = number of word types w' which precede w  $N_{+I}(\bullet \bullet) = \sum_{w'} N_{+I}(\bullet w')$ 

Kneser-Ney smoothing: Use absolute discounting, but use  $P(w) = N_{+1}(\bullet w)/N_{+1}(\bullet \bullet)$ 

**Modified Kneser-Ney smoothing:** Use different *D for bigrams and trigrams* (Chen & Goodman '98)

## To recap....

## Today's key concepts

Dealing with unknown words
Dealing with unseen events
Good-Turing smoothing
Linear Interpolation
Absolute Discounting
Kneser-Ney smoothing

Today's reading: Jurafsky and Martin, Chapter 4, sections 1-4