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Last lecture’s key concepts
Morphology (word structure): stems, affixes
Derivational vs. inflectional morphology
Compounding
Stem changes
Morphological analysis and generation

Finite-state automata
Finite-state transducers
Composing finite-state transducers
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Finite-state transducers
-FSTs define a relation between two regular 
languages.

-Each state transition maps (transduces) a character 
from the input language to a character (or a 
sequence of characters) in the output language  
 

-By using the empty character (ε), characters can 
be deleted (x:ε) or inserted(ε:y)  
 

-FSTs can be composed (cascaded), allowing us to 
define intermediate representations. 
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x:y

x:ε ε:y
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Today’s lecture
How can we distinguish word salad, spelling errors 
and grammatical sentences?

Language models define probability distributions  
over the strings in a language.
N-gram models are the simplest and most common 
kind of language model.

We’ll look at how they’re defined, how to estimate 
(learn) them, and what their shortcomings are. 

We’ll also review some very basic probability theory.
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Why do we need language models?
Many NLP tasks return output in natural language:
-Machine translation
-Speech recognition
-Natural language generation
-Spell-checking

Language models define probability distributions  
over (natural language) strings or sentences.

We can use them to score/rank possible sentences: 
If PLM(A) > PLM(B), choose sentence A over B
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Reminder: 
Basic Probability 
Theory

�6

CS447: Natural Language Processing (J. Hockenmaier) �7

P(    )    = 2/15 
P(blue) = 5/15 
P(blue |    ) = 2/5

P(    )    = 1/15 
P(red)   = 5/15 
P(   )     = 5/15

P(    or   ) = 2/15 
P(    |red) = 3/5 

Pick a random shape, then put it back in the bag.
Sampling with replacement
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Pick a random shape, then put it back in the bag.
What sequence of shapes will you draw?

P(                  ) 

P(                  )

= 1/15 × 1/15 × 1/15 × 2/15  
= 2/50625

= 3/15 × 2/15 × 2/15 × 3/15 
= 36/50625

P(    )    = 2/15 
P(blue) = 5/15 
P(blue |    ) = 2/5

P(    )    = 1/15 
P(red)   = 5/15 
P(   )     = 5/15

P(    or   ) = 2/15 
P(    |red) = 3/5 

Sampling with replacement
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Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is the use 
of a book,' thought Alice 'without 
pictures or conversation?'

Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is the use 
of a book,' thought Alice 'without 
pictures or conversation?'
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P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66
P(to) = 2/66

P(her) = 2/66
P(sister) = 2/66
P(,) = 4/66
P(') = 4/66

Sampling with replacement
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P(of) = 3/66
P(Alice) = 2/66
P(was) = 2/66
P(to) = 2/66

P(her) = 2/66
P(sister) = 2/66
P(,) = 4/66
P(') = 4/66

beginning by, very Alice but was and? 
reading no tired of to into sitting 
sister the, bank, and thought of without 
her nothing: having conversations Alice 
once do or on she it get the book her had 
peeped was conversation it pictures or 
sister in, 'what is the use had twice of 
a book''pictures or' to
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In this model, P(English sentence) = P(word salad) 

Sampling with replacement

CS447: Natural Language Processing (J. Hockenmaier)

Probability theory: terminology
Trial: 
Picking a shape, predicting a word
 
Sample space Ω:  
The set of all possible outcomes  
(all shapes; all words in Alice in Wonderland)
 
Event ω ⊆ Ω:  
An actual outcome  (a subset of Ω) 
(predicting ‘the’, picking a triangle)
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Kolmogorov axioms:
1) Each event has a probability between 0 and 1.
2) The null event has probability 0. 
     The probability that any event happens is 1.
3) The probability of all disjoint events sums to 1.

The probability of events
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0 ⇥ P (� � �) ⇥ 1
P (⇤) = 0 and P (�) = 1

�
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Bernoulli distribution (two possible outcomes)
The probability of success (=head,yes) 

The probability of head is p. 
The probability of tail is 1−p. 

Categorical distribution (N possible outcomes)
The probability of category/outcome ci is pi
(0≤ pi ≤1 ∑i pi = 1)

Discrete probability distributions: 
single trials
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The conditional probability of X given Y, P(X | Y),  
is defined in terms of the probability of Y, P( Y ),  
and the joint probability of X and Y, P(X,Y):

Joint and Conditional Probability

P (X|Y ) =
P (X, Y )
P (Y )

P(blue |       ) = 2/5
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Alice was beginning to get very tired of 
sitting by her sister on the bank, and of 
having nothing to do: once or twice she 
had peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is the use 
of a book,' thought Alice 'without 
pictures or conversation?'

P(wi+1 = of | wi = tired) = 1
P(wi+1 = of  | wi = use)     = 1
P(wi+1 = sister | wi = her) =  1
P(wi+1 = beginning | wi = was) = 1/2
P(wi+1 = reading | wi = was) = 1/2

P(wi+1 = bank | wi = the) = 1/3
P(wi+1 = book | wi = the) = 1/3
P(wi+1 = use | wi = the) = 1/3

Conditioning on the previous word
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English  
Alice was beginning to get very 
tired of sitting by her sister on 
the bank, and of having nothing to 
do: once or twice she had peeped 
into the book her sister was 
reading, but it had no pictures or 
conversations in it, 'and what is 
the use of a book,' thought Alice 
'without pictures or conversation?'

Word Salad
beginning by, very Alice but was and? 
reading no tired of to into sitting 
sister the, bank, and thought of without 
her nothing: having conversations Alice 
once do or on she it get the book her had 
peeped was conversation it pictures or 
sister in, 'what is the use had twice of 
a book''pictures or' to

Now, P(English) ⪢ P(word salad) 

P(wi+1 = of | wi = tired) = 1
P(wi+1 = of  | wi = use)     = 1
P(wi+1 = sister | wi = her) =  1
P(wi+1 = beginning | wi = was) = 1/2
P(wi+1 = reading | wi = was) = 1/2

P(wi+1 = bank | wi = the) = 1/3
P(wi+1 = book | wi = the) = 1/3
P(wi+1 = use | wi = the) = 1/3

Conditioning on the previous word
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The chain rule
The joint probability P(X,Y) can also be expressed in 
terms of the conditional probability P(X | Y)  
 
 

This leads to the so-called chain rule: 
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P (X, Y ) = P (X|Y )P (Y )

P (X1, X2, . . . , Xn) = P (X1)P (X2|X1)P (X3|X2, X1)....P (Xn|X1, ...Xn�1)

= P (X1)
n�

i=2

P (Xi|X1 . . . Xi�1)
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Two random variables X and Y are independent if 
 
 
 

If X and Y are independent, then P(X | Y) = P(X):

Independence

P (X, Y ) = P (X)P (Y )

P (X|Y ) =
P (X, Y )
P (Y )

=
P (X)P (Y )

P (Y )
(X ,Y independent)

= P (X)
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Probability models
Building a probability model consists of two steps:
1. Defining the model
2. Estimating the model’s parameters  
    (= training/learning ) 

Models (almost) always make  
independence assumptions.

That is, even though X and Y are not actually independent,  
our model may treat them as independent.

This reduces the number of model parameters that 
we need to estimate (e.g. from n2 to 2n)
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Language modeling 
with n-grams
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A language model over a vocabulary V assigns 
probabilities to strings drawn from V*. 

Recall the chain rule: 
 

An n-gram language model assumes each word depends 
only on the last n−1 words:

Language modeling with N-grams

P (w1...wi) = P (w1)P (w2|w1)P (w3|w1w2)...P (wi|w1...wi�1)

Pngram(w1...wi) := P (w1)P (w2|w1)...P ( wi⇤⇥�⌅
nth word

| wi�n�1...wi�1⇤ ⇥� ⌅
prev. n�1 words

)
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N-gram models
Unigram model P (w1)P (w2)...P (wi)
Bigram model P (w1)P (w2|w1)...P (wi|wi�1)
Trigram model P (w1)P (w2|w1)...P (wi|wi�2wi�1)
N-gram model P (w1)P (w2|w1)...P (wi|wi�n�1...wi�1)

N-gram models assume each word (event) depends 
only on the previous n−1 words (events).  
Such independence assumptions are called  
Markov assumptions (of order n−1).
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P(wi|w1...wi�1) :⇡ P(wi|wi�n�1...wi�1)
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1. Bracket each sentence by special start and end symbols: 
 
<s> Alice was beginning to get very tired… </s>
(We only assign probabilities to strings  <s>...</s>)  

2. Count the frequency of each n-gram…. 
     C(<s> Alice) = 1, C(Alice was) = 1,…. 

3. .... and normalize these frequencies to get the probability: 
 

This is called a relative frequency estimate of P(wn | wn−1)

Estimating N-gram models
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P (wn|wn�1) =
C(wn�1wn)
C(wn�1)
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Start and End symbols <s>… <\s>
Why do we need a start-of-sentence symbol?

This is just a mathematical convenience, since it allows us to 
write e.g. P(w1 | <s>) for the probability of the first word in 
analogy to P(wi+1 | wi ) for any other word.

Why do we need an end-of-sentence symbol?
This is necessary if we want to compare the probability of 
strings of different lengths (and actually define a probability 
distribution over V*).
We include <\s> in the vocabulary V, require that each string 
ends in <\s> and that <\s> can only appear at the end of 
sentences, and estimate P(wi+1 = <\s> | wi ). 
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Parameter estimation (training)
Parameters: the actual probabilities
      P(wi = ‘the’ | wi-1 = ‘on’) = ???

We need (a large amount of) text as training data  
to estimate the parameters of a language model.

The most basic estimation technique: 
relative frequency estimation (= counts)
      P(wi = ‘the’ | wi-1 = ‘on’) =  C(‘on the’) / C(‘on’)  
Also called Maximum Likelihood Estimation (MLE)
 
MLE assigns all probability mass to events that occur  
in the training corpus.
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How do we use language models?
Independently of any application, we can use a 
language model as a random sentence generator 
(i.e we sample sentences according to their language model 
probability)

Systems for applications such as machine translation, 
speech recognition, spell-checking, generation, often 
produce multiple candidate sentences as output.
-We prefer output sentences SOut that have a higher probability 
-We can use a language model P(SOut) to score and rank these 
different candidate output sentences, e.g. as follows:

      argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut) 
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Using n-gram models 
to generate language
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Generating from a distribution
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How do you generate text from an n-gram model? 

That is, how do you sample from a distribution P(X |Y=y)?
-Assume X has N possible outcomes (values): {x1, …, xN} 
and P(X=xi | Y=y) = pi  
-Divide the interval [0,1] into N smaller intervals according to 
the probabilities of the outcomes
-Generate a random number r between 0 and 1. 
-Return the x1 whose interval the number is in.

x1 x2 x3 x4 x5
 0               p1                        p1+p2            p1+p2+p3            p1+p2+p3+p4     1

r
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Generating the Wall Street Journal
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Generating Shakespeare 
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Intrinsic vs Extrinsic Evaluation
How do we know whether one language model  
is better than another? 

There are two ways to evaluate models:
- intrinsic evaluation captures how well the model captures 
what it is supposed to capture (e.g. probabilities)
-extrinsic (task-based) evaluation captures how useful the 
model is in a particular task.

Both cases require an evaluation metric that allows us 
to measure and compare the performance of different 
models.

�31 CS447: Natural Language Processing (J. Hockenmaier)

How do we evaluate models?
Define an evaluation metric (scoring function).

We will want to measure how similar the predictions  
of the model are to real text.

Train the model on a ‘seen’ training set
Perhaps: tune some parameters based on held-out data  
(disjoint from the training data, meant to emulate unseen data)  

Test the model on an unseen test set 
(usually from the same source (e.g. WSJ) as the training data)
Test data must be disjoint from training and held-out data
Compare models by their scores (more on this next week).
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Intrinsic Evaluation  
of Language Models: 
Perplexity
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Perplexity
Perplexity is the inverse of the probability of the test 
set (as assigned by the language model), normalized 
by the number of word tokens in the test set. 

Minimizing perplexity = maximizing probability!

Language model LM1 is better than LM2  
if LM1 assigns lower perplexity (= higher probability)  
to the test corpus w1…wN

NB: the perplexity of LM1 and LM2 can only be directly 
compared if both models use the same vocabulary.
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The inverse of the probability of the test set, 
normalized by the number of tokens in the test set. 

Assume the test corpus has N tokens, w1…wN

If the LM assigns probability P(w1, …, wi−n) to the test 
corpus, its perplexity, PP(w1…wN), is defined as: 
 
 
 

A LM with lower perplexity is better because it assigns 
a higher probability to the unseen test corpus.

Perplexity
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PP (w1...wN ) = P (w1...wN )�
1
N

= N

⇥
1

P (w1...wN )

= N

⇧⌅⌅⇤
N�

i=1

1
P (wi|w1...wi�1)

=def
N

⇧⌅⌅⇤
N�

i=1

1
P (wi|wi�n...wi�1)

PP (w1...wN ) = P (w1...wN )�
1
N

= N

⇥
1

P (w1...wN )

= N

⇧⌅⌅⇤
N�

i=1

1
P (wi|w1...wi�1)

=def
N

⇧⌅⌅⇤
N�

i=1

1
P (wi|wi�n...wi�1)
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Given a test corpus with N tokens, w1…wN,  
and an n-gram model P(wi  | wi−1, …, wi−n+1)  
we compute its perplexity PP(w1…wN) as follows:

Perplexity PP(w1…wn)

(Chain rule)

(N-gram  
model)
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Practical issues
Since language model probabilities are very small, 
multiplying them together often yields to underflow. 

It is often better to use logarithms instead, so replace
 
 
 
 
with
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PP(w1...wN) =def
N

s
N

’
i=1

1
P(wi|wi�1, ...,wi�n+1)

PP(w
1

...wN) =def exp

✓
� 1

N

N

Â
i=1

logP(wi|wi�1

, ...,wi�n+1

◆
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Perplexity and LM order
Bigram LMs have lower perplexity than unigram LMs
Trigram LMs have lower perplexity than bigram LMs 
… 

Example from the textbook 
(WSJ corpus, trained on 38M tokens, tested on 1.5 M tokens, 
vocabulary: 20K word types)
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Unigram Bigram Trigram
Perplexity 962 170 109
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Extrinsic (Task-Based) 
Evaluation of LMs:  
Word Error Rate
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Intrinsic vs. Extrinsic Evaluation
Perplexity tells us which LM assigns a higher 
probability to unseen text 

This doesn’t necessarily tell us which LM is better for 
our task (i.e. is better at scoring candidate sentences)  

Task-based evaluation: 
-Train model A, plug it into your system for performing task T
-Evaluate performance of system A on task T.
-Train model B, plug it in, evaluate system B on same task T.
-Compare scores of system A and system B on task T.
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Originally developed for speech recognition. 

How much does the predicted sequence of words 
differ from the actual sequence of words in the correct 
transcript? 
 
 

Insertions:       “eat lunch” → “eat a lunch”
Deletions:        “see a movie”   → “see movie”
Substitutions: “drink ice tea”→ “drink nice tea”

Word Error Rate (WER)

WER =
Insertions + Deletions + Substitutions

Actual words in transcript
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But…. 
… unseen test data will contain unseen words
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Getting back to 
Shakespeare…

�43 CS447: Natural Language Processing (J. Hockenmaier)

Generating Shakespeare 
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Shakespeare as corpus
The Shakespeare corpus consists of N=884,647 word 
tokens and a vocabulary of V=29,066 word types  

Shakespeare produced 300,000 bigram types  
out of V2= 844 million possible bigram types.

99.96% of possible bigrams don’t occur in the corpus.

Our relative frequency estimate assigns non-zero 
probability to only 0.04% of the possible bigrams  
That percentage is even lower for trigrams, 4-grams, etc.
4-grams look like Shakespeare because they are Shakespeare!
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We estimated a model on 440K word tokens, but:

Only 30,000 word types occur in the training data  
Any word that does not occur in the training data  
has zero probability!

Only 0.04% of all possible bigrams (over 30K word 
types) occur in the training data  
Any bigram that does not occur in the training data  
has zero probability (even if we have seen both words in 
the bigram)

MLE doesn’t capture unseen events
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Zipf’s law: the long tail

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000

Fr
eq

ue
nc

y 
(lo

g)

Number of words (log) 

How many words occur N times?

W
or

d 
fre

qu
en

cy
 (l

og
-s

ca
le

)

In natural language:
-A small number of events (e.g. words) occur with high frequency
-A large number of events occur with very low frequency
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A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times? 

the r-th most 
common word wr  
has P(wr) ∝ 1/r
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So…. 
… we can’t actually evaluate our MLE models on 
unseen test data (or system output)…

… because both are likely to contain words/n-grams 
that these models assign zero probability to.

We need language models that assign some 
probability mass to unseen words and n-grams. 

We will get back to this on Friday. 
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To recap….
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Today’s key concepts
N-gram language models
Independence assumptions
Relative frequency (maximum likelihood) estimation
Evaluating language models: Perplexity, WER
Zipf’s law

Today’s reading: 
Jurafsky and Martin, Chapter 4, sections 1-4 (2008 edition)
Chapter 3 (3rd Edition) 

Friday’s lecture: Handling unseen events!
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