
CS447: Natural Language Processing Fall 2018

Homework 1

Handed Out: 09/07/2018 Due: 11:59pm, 09/28/2018

Please submit an archive of your solution (including code) on Compass by 11:59pm on the due date. Please
document your code where necessary.

Getting started

All files that are necessary to do the assignment are contained in a tarball which you can get from:

http://courses.engr.illinois.edu/cs447/HW/cs447_HW1.tar.gz

You need to unpack this tarball (tar -zxvf HW1.tar.gz) to get a directory that contains the code and data
you will need for this homework.

Part 1: Language models and smoothing (6 points)

1.1 Goal

The first part of the assignment requires you to train some simple n-gram language models on a corpus of
movie reviews and to test them on two smaller corpora: a collection of positive reviews, and one of negative
reviews.

1.2 Data

The corpora are stored as text files, where each line is one sentence from a review:

1. train.txt: contains the training corpus of movie reviews (30k sentences)

2. pos test.txt: contains the test corpus of positive reviews (1k sentences)

3. neg test.txt: contains the test corpus of negative reviews (1k sentences)

Tokens (this includes words and punctuation marks, which you should treat like regular tokens) are separated
by whitespaces.

1.3 Provided Code

To get you started, we have provided the module hw1 lm.py. This file contains code for reading in the
corpora (as in HW0) and maintaining a basic probability distribution (UnigramDist).

We have also defined a parent LanguageModel class, along with subclass definitions for the five language
models we’d like you to implement. Your main task (described in section 1.4) is to implement the high-level
methods of these models, specifically: generating sentences, calculating the probability of sentences, and
computing the perplexity of a corpus.

Internally, we recommend that you treat each sentence as a list of tokens; this is the same representation
returned by our input method.
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1.4 What you need to implement

1.4.1 Preprocessing

To make your models more robust, it is necessary to perform some basic preprocessing on the corpora.

Sentence markers For all corpora, each sentence must be surrounded by a start of sentence and end of
sentence marker (<s> ... </s>). These markers will allow your models to generate sentences that have
realistic beginnings and endings, if you train your model properly.

Handling unknown words In order to deal with unknown words in the test corpora, all words that ap-
pear only once in the training corpus must be replaced with a special token for unknown words (e.g. ’UNK’)
before estimating your models. When unknown words are encountered in the test corpora, they should be
treated as that special token instead.

These preprocessing steps have been provided for you in the assignment code.

1.4.2 The LanguageModel classes

In order to compare the effects of using different-order n-grams and smoothing, we require you to implement
the following five models:

1. UnigramModel: an unsmoothed unigram model, with probability distribution P̂ (w)

2. SmoothedUnigramModel: a unigram model smoothed using Laplace (add-one) smoothing, with proba-
bility distribution PL(w)

3. BigramModel: an unsmoothed bigram model, with probability distribution P̂ (w′|w)

4. SmoothedBigramModelAD: a bigram model smoothed using absolute discounting, with probability dis-
tribution PAD(w′|w)

5. SmoothedBigramModelKN: a bigram model smoothed using Kneser-Ney, with probability distribution
PKN (w′|w)

Laplace Smoothing For the SmoothedUnigramModel we want you to use Laplace smoothing, also known
as add-one smoothing, on the unigram model P̂ (w). Remember that in Laplace smoothing we increase the
counts of all events by one and renormalize. This takes probability mass away from seen events and reserves
it for unseen events (see Lecture 4)

In order to smooth your unigram model, you will need the number of words in the corpus, N , and the number
of word types, S. The distinction between these is meaningful: N indicates the number of word instances,
where S refers to the size of our vocabulary. The sentence “the cat saw the dog” has four word types (the,
cat, saw, dog), but five word tokens (the, cat, saw, the, dog). The token “the” appears twice in the sentence,
but they share the same type the.

If c(w) is the frequency of w in the training data, you can compute PL(w) as follows:

PL(w) =
c(w) + 1

N + S

Absolute Discounting Smoothing In order to produce the SmoothedBigramModel, we want you to use
absolute discounting on the bigram model P̂ (w′|w).

You need to compute a discounting factor D. If n1 are the number of bigrams w1w2 that appear only once,
and n2 are the number of bigrams w1w2 that appear exactly twice, compute D as

D =
n1

n1 + 2n2
.
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For each distribution P (w′|w), you need to then also compute the number of seen bigram types ww′, Sw

(this captures how many different w′ occur after w in the training data).

S(w) = |w′ : c(ww′) > 0|

If c(w) is the frequency of w in the training data, and c(ww′) the frequency of ww′ in the training data,
compute PAD(w′|w) as follows:

PAD(w′|w) =
max(c(ww′)−D, 0)

c(w)
+

D

c(w)
× Sw × PL(w′)

Kneser-Ney Smoothing For the SmoothedBigramModelKN, Kneser-Ney augments absolute discounting
with another way of handling lower order unigram distribution. Instead of directly using the Laplace
smoothed unigram in absolute discouting, here you can replace the MLE unigram distribution with the
continuation probability PC , that estimates how likely the unigram is to continue a new context, normalized
by the total number of unique bigrams. You can then compute PC as follows (here i is a free variable):

PC(w′) =
|w : c(ww′) > 0|

|wi−1wi : c(wi−1wi) > 0|

Then compute PKN as,

PKN (w′|w) =
max(c(ww′)−D, 0)

c(w)
+

D

c(w)
× Sw × PC(w′)

1.4.3 Generating sentences

For each of the four language models, you need to implement the following methods:

generateSentence(self): returns a sentence sent that is generated by the language model. sent is
a list of the form [<s>, w1, ..., wn, </s>], where w1 to wn are words in your vocabulary (including UNK,
but excluding <s> and </s>). You can assume that <s> starts each sentence (with probability 1). The
following words (w1, ..., wn, </s>) are generated according to your language model’s distribution. The
number of words (n) is not fixed. Instead, you stop generating a sentence as soon as you generate the
end of sentence symbol </s>.

getSentenceProbability(self, sen): returns the probability of the sentence sen (which is again a
list of the form [<s>, w1, ..., wn, </s>]) according to the model.

Please use the provided generateSentencesToFile method and your unigram and bigram language models
to generate 20 sentences (saved as unigram output.txt, smooth unigram output.txt, bigram output.txt,
smooth bigram ad output.txt, and smooth bigram kn output.txt).

Implementation hint In order to avoid underflow, your implementation may have to use log-probabilities
internally. That is, once you have computed each (smoothed) probability from your relative frequency
estimates (counts), you need to convert it to its logarithm (use math.log(p) for natural logs or math.log(p,
2) for base-2 log, but make sure you always use the same base).

1.4.4 Computing the perplexity of the test corpora

You need to compute the perplexity (normalized inverse log probability) of the two test corpora according
to all five of your models (unsmoothed unigram, smoothed unigram, unsmoothed bigram, smoothed bigram
ad and smoothed bigram kn). Implement the following method to evaluate a whole corpus:

getCorpusPerplexity(self, corpus): given a corpus corpus, calculate and return its perplexity
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For a corpus W with N words, Jurafsky and Martin tells you to compute perplexity as follows:

Perplexity(W ) = N

√√√√ N∏
i=1

1

P (wi|wi−1)

Since this is prone to underflow issues, you may be better off computing it using logarithms:

Perplexity(W ) = exp

(
− 1

N

N∑
i=1

logP (wi|wi−1)

)
Evaluate the models on the test corpora. Do you see a difference between the two test domains?

1.5 What you will be graded on

You will be graded based on the files you submit and the answers you provide to the questions on Compass.
Each of your models (excluding the unsmoothed unigram model) is worth 1 point (4 points total), and the
Compass questions are worth 0.5 points (2 points total). Keep in mind that we must be able to run your
submitted code or you will receive 0 points.

To help you identify errors, we have included a test script hw1 lm test.py. This script will use the
classes you implement in hw1 lm.py and test their methods against a simple corpus, test.txt, which we
have also included.

1.6 What to submit

See the end of this document for full submission guidelines, but the files you must submit for this portion
are:

1. hw1 lm.py: your completed Python module for language models (see all of section 1.4)

2. Four text files, containing sentences generated by your language models (see section 1.4.3). For each
sentence, include the probability your model assigns to that sentence.

• unigram output.txt: a text file containing the 20 sentences generated by your unsmoothed
unigram language model

• smooth unigram output.txt: a text file containing the 20 sentences generated by your smoothed
unigram language model

• bigram output.txt: a text file containing the 20 sentences generated by your unsmoothed bigram
language model

• smooth bigram ad output.txt: a text file containing the 20 sentences generated by your smoothed
bigram language model using Absolute Discounting Smoothing

• smooth bigram kn output.txt: a text file containing the 20 sentences generated by your smoothed
bigram language model using Kneser-Ney Smoothing

Additionally, you must answer the following discussion questions on Compass when you submit your
assignment. These questions can be found by navigating to Course Content →Homeworks →Homework 1
→Homework 1 Language Model Discussion Questions

1. When generating sentences with the unigram model, what controls the length of the generated sen-
tences? How does this differ from the sentences produced by the bigram models?

2. Consider the probability of the generated sentences according to your models. Do your models assign
drastically different probabilities to the different sets of sentences? Why do you think that is?

3. Generate additional sentences using your bigram and smoothed bigram models. In your opinion, which
model produces better / more realistic sentences?

4. For each of the four models, which test corpus has a higher perplexity? Why? Make sure to include
the perplexity values in the answer.
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Part 2: Finite-State Transducers (4 points)

2.1 Goal

Your task is to implement a finite-state transducer (or FST; see Lecture 2) which transduces the infinitive
form of verbs to their correct -ing form. You will be graded according to how many verbs your transducer
handles correctly.

2.2 Data

The input to your program is a text file with a single (infinitive) verb per line. For each verb, your program
should compute the correct translation (e.g. walk ==> walking) and print it as a line in the output file.

1. 360verbs.txt: sample input file containing a list of 360 infinitive verbs, one verb per line.

2. 360verbsCorrect.txt: sample output file containing the correct translation (infinitive to -ing form)
for each of the 360 verbs in order, one translation per line.

2.3 Provided Code

To help you with your task, we’ve provided fst.py, a module for constructing and evaluating FSTs. You
shouldn’t modify any of the code in this file. Below, we describe the most useful methods provided by this
module:

FST(self, initialStateName): instantiate an FST with an initial (non-accepting) state named
initialStateName

addState(self, name, isFinal): add a state named name to the FST; by default, isFinal=false
and so the state is not an accepting state.

addTransition(self, inStateName, inString, outString, outStateName): adds a transition be-
tween state inStateName and state outStateName, where both of these states already exist in the FST.
The FST can traverse this transition after reading inString1, and outputs outString when it does
so.

addSetTransition(self, inStateName, inStringSet, outStateName): adds a transition between
state inStateName and state outStateName for each character in inStringSet. For each transition,
the FST outputs the same character it reads.

You will need to implement your solution by modifying the file hw1 fst.py. This file uses the function
buildFST() to define a rudimentary (and buggy) FST for translating verbs. Your task is to modify this
function (using the methods in fst.py) to produce a better FST. You are free to define your own character
sets (we’ve started out with some useful ones at the beginning of the file) and any helper methods you
require. The main method evaluates the sample FST on an input file. When implementing your FST, you
can save your results to another file (e.g. 360verbsGuess.txt) and run diff against 360verbsCorrect.txt
to see how well you’re doing:

python hw1_fst.py 360verbs.txt > 360verbsGuess.txt

diff -U 0 360verbsCorrect.txt 360verbsGuess.txt | grep ^@ | wc -l

This will print the number of incorrect translations.

1inString can be at most one character long
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2.4 What you need to implement

Your task is to fix the implementation of buildFST() by replacing the sample FST with a better FST for
translating infinitive verbs to their correct -ing form. Your FST can be non-deterministic (that is, a state
may have multiple transitions for the same input character), but each accepted string should only have one
analysis.2 It will accept a string if it reaches a final state after having read its last character. If it accepts a
string, it will output its translation. If it does not accept a string, it will output FAIL. All verb stems are at
least three letters long. In many cases, the -ing form just consists of stem + ing:

walk ==> walking fly ==> flying

But there are a number of exceptions. In particular, in order to correctly translate the 360 verbs we’ve
provided, your FST must implement the following rules:

1. Dropping the final -e: Drop the final -e if and only if it is preceded by a consonant or by the letter
u:

ride ==> riding make ==> making see ==> seeing

argue ==> arguing seize ==> seizing

2. Double the final consonant: Double a final single -n, -p, -t, -r if and only if it is preceded by a
single vowel3:

stop ==> stopping admit ==> admitting stoop ==> stooping

occur ==> occurring set ==> setting leap ==> leaping

halt ==> halting bar ==> barring

Exceptions to this rule are verbs ending in -er, -en:4:

gather ==> gathering happen ==> happening

3. Change final -ie to -y :

die ==> dying

Notes: When you define a transition, the input strings can only be zero (””) or one character long, and your
FST can’t have more than 30 states (you shouldn’t need that many).

2.5 What to submit

For this portion, you only need to submit one file:

1. hw1 fst.py: your completed Python module for translating verb forms using FSTs (see section 2.4)

We will use our own copy of the fst module and input files to test your program during grading.

2.6 What you will be graded on

You will be graded according to the number of verbs in 360verbs.txt that your FST correctly translates
(100% is 4 points; the provided FST starts at 78%). You need to make sure that the function definition of
buildFST() remains the same, so that we can check your results and verify that your FST adheres to the
specification.

2If your FST accepts a string along multiple paths, all of the outputs will all be printed out and the translation will be
marked incorrect: e.g. appeal --> appealingappealling

3This is a simplified version of the actual spelling rule. Our data set does not contain verbs like pardon, where this rules
does not apply. It also does not contain verbs that end in other letters like stab, slam, where this rule also applies.

4We are assuming American English spelling for labeling, etc.
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Submission guidelines

You should submit your solution as a compressed tarball on Compass. To do this, save your files in a
directory called abc123 hw1 (where abc123 is your NetID) and create the archive from its parent directory
(tar -zcvf abc123 hw1.tar.gz abc123 hw1). Do not include the corpora themselves, but do include the
following files:

1. hw1 lm.py: your completed Python module for language models (see all of section 1.4)

2. Five text files, containing sentences generated by your language models (see section 1.4.3). For each
sentence, include the probability your model assigns to that sentence.

• unigram output.txt: a text file containing the 20 sentences generated by your unsmoothed
unigram language model

• smooth unigram output.txt: a text file containing the 20 sentences generated by your smoothed
unigram language model

• bigram output.txt: a text file containing the 20 sentences generated by your unsmoothed bigram
language model

• smooth bigram ad output.txt: a text file containing the 20 sentences generated by your smoothed
bigram language model using Absolute Discounting Smoothing

• smooth bigram kn output.txt: a text file containing the 20 sentences generated by your smoothed
bigram language model using Kneser-Ney Smoothing

3. hw1 fst.py: your completed Python module for translating verb forms using FSTs (see section 2.4)

Additionally, you must answer the discussion questions on Compass when you submit your assignment.
These questions can be found by navigating to Course Content →Homeworks →Homework 1 →Homework
1 Language Model Discussion Questions
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