Friday’s key concepts (I)

The Forward algorithm:
Computes $P(w)$ by replacing Viterbi’s $\text{max}()$ with $\text{sum}()$

Learning HMMs from raw text with the EM algorithm:
- We have to replace the observed counts (from labeled data) with expected counts (according to the current model)
- Renormalizing these expected counts will give a new model
- This will be “better” than the previous model, but we will have to repeat this multiple times to get to decent model

The Forward-Backward algorithm:
A dynamic programming algorithm for computing the expected counts of tag bigrams and word-tag occurrences in a sentence under a given HMM

Expected counts

Emission probabilities with observed counts $C(w, t)$

$P(w \mid t) = \frac{C(w, t)}{\sum_w C(t)} = \frac{C(w, t)}{\sum_w C(w', t)}$

Emission probabilities with expected counts $\langle C(w, t) \rangle$

$P(w \mid t) = \frac{\langle C(w, t) \rangle}{\sum_w \langle C(t) \rangle} = \frac{\langle C(w, t) \rangle}{\sum_w \langle C(w', t) \rangle}$

$\langle C(w, t) \rangle$: How often do we expect to see word w with tag t in our training data (under a given HMM)?

We know how often the word w appears in the data, but we don’t know how often it appears with tag t.

We need to sum up $\langle C(w^{(i)}=w, t) \rangle$ for any occurrence of w.

We can show that $\langle C(w^{(i)}=w, t) \rangle = P(t^{(i)}=t \mid w)$

(NB: Transition counts $\langle C(t^{(i)}=t, t^{(i+1)}=t') \rangle$ work in a similar fashion)

Forward-Backward: $P(t^{(i)}=t \mid w^{(1)}..(N))$

$P(t^{(i)}=t \mid w^{(1)}..(N)) = \frac{P(t^{(i)}=t, w^{(1)}..(N))}{P(w^{(1)}..(N))} = \frac{\langle C(t^{(i)}=t, w^{(1)}..(N)) \rangle}{\sum_{t'} \langle C(t^{(i)}=t', w^{(1)}..(N)) \rangle}$

Due to HMM’s independence assumptions:

$P(t^{(i)}=t, w^{(1)}..(N)) = P(t^{(i)}=t, w^{(1)}..(i)) \times P(w^{(i+1)}..(N) \mid t^{(i)}=t)$

The forward algorithm gives $P(w^{(1)}..(N)) = \sum_{t} \text{forward}[N][t]$

Forward trellis: $\text{forward}[i][t] = P(t^{(i)}=t, w^{(1)}..(i))$

Gives the total probability mass of the prefix $w^{(1)}..(i)$, summed over all tag sequences $t^{(1)}..(i)$ that end in tag $t^{(i)}=t$

Backward trellis: $\text{backward}[i][t] = P(w^{(i+1)}..(N) \mid t^{(i)}=t)$

Gives the total probability mass of the suffix $w^{(i+1)}..(N)$, summed over all tag sequences $t^{(i+1)}..(N)$, if we assign tag $t^{(i)}=t$ to $w^{(i)}$
The Backward algorithm

The backward trellis is filled from right to left. \(\text{backward}[i][t] \) provides \(P(w^{(i+1)...(N)} | t^{(i)} = t) \)

\[\sum_{t'} \text{backward}[1][t'] = P(w^{(i+1)...(N)}) = \sum_{t} \text{forward}[N][t] \]

Initialization (last column):
\[\text{backward}[N][t] = 1 \]

Recursion (any other column):
\[\text{backward}[i][t] = \sum_{t'} P(t' | t) \times P(w^{(i+1)} | t') \times \text{backward}[i+1][t'] \]

How do we compute \(\langle C(t_i) | w_j \rangle \)

\[\langle C(t, w^{(i)}) | w \rangle = P(t^{(i)} = t, w) / P(w) \]

with
\[P(t^{(i)} = t, w) = \text{forward}[i][t] \times \text{backward}[i][t] \]
\[P(w) = \sum_{t} \text{forward}[N][t] \]

The importance of tag dictionaries

Forward-Backward assumes that each tag can be assigned to any word.

No guarantee that the learned HMM bears any resemblance to the tags we want to get out of a POS tagger.

A tag dictionary lists the possible POS tags for words.

Even a partial dictionary that lists only the tags for the most common words and contains at least a few words for each tag provides enough constraints to get significantly closer to a model that produces linguistically correct (and hence useful) POS tags.

a	DT back	JJ, NN, VB, VBP, RP
an	DT bank	NN, VB, VBP
and	CC	
America	NNP zebra NN	
POS tagging

Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Pierre NNP Vinken NNP , _ 61 CD years NNS old JJ , _ , will MD join VB IBM NNP ‘s POS board NN as IN a DT nonexecutive JJ director NN Nov. NNP 29 CD . _

Task: assign POS tags to words

Noun phrase (NP) chunking

Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Task: identify all non-recursive NP chunks

The BIO encoding

We define three new tags:
- B-NP: beginning of a noun phrase chunk
- I-NP: inside of a noun phrase chunk
- O: outside of a noun phrase chunk

Shallow parsing

Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

[NP Pierre Vinken] , [NP 61 years] old , [VP will join] [NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive director] [NP Nov. 2] .

Task: identify all non-recursive NP, verb (“VP”) and preposition (“PP”) chunks
The BIO encoding for shallow parsing

We define several new tags:

- **B-NP B-VP B-PP**: beginning of an NP, “VP”, “PP” chunk
- **I-NP I-VP I-PP**: inside of an NP, “VP”, “PP” chunk
- **O**: outside of any chunk

Example:

```
[NP Pierre Vinken] , [NP 61 years] old , [VP will join]
[NP IBM] ’s [NP board] [PP as] [NP a nonexecutive
director] [NP Nov. 2] .
```

Named Entity Recognition

```
Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .
```

Task: identify all mentions of named entities
/people, organizations, locations, dates/

The BIO encoding for NER

We define many new tags:

- **B-PERS, B-DATE, ...**: beginning of a mention of a person/date...
- **I-PERS, I-DATE, ...**: inside of a mention of a person/date...
- **O**: outside of any mention of a named entity

Example:

```
[PERS Pierre Vinken] , 61 years old , will join
[ORG IBM] ’s board as a nonexecutive director
[DATE Nov. 2] .
```

Many NLP tasks are sequence labeling tasks

Input: a sequence of tokens/words:
Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

Output: a sequence of labeled tokens/words:

POS-tagging: Pierre _NNP Vinken _NNP , 61 _CD years _NNS
old _JJ , will _MD join _VB IBM _NNP ’s _POS board _NN
as _IN a _DT nonexecutive _JJ director _NN Nov. _NNP
29 _CD .

Named Entity Recognition: Pierre _B-PERS Vinken _I-PERS , 61 _0 years _0 old _0 , 61 _0 will _0 join _0 IBM _B-ORG ‘s _0
board _0 as _0 a _0 nonexecutive _0 director _0 Nov. _B-DATE
29 _I-DATE _0
Graphical models for sequence labeling

HMMs as graphical models

HMMs are **generative** models of the observed input string w

They ‘generate’ w with $P(w, t) = \prod_i P(t(i) | t(i-1)) P(w(i) | t(i))$

When we use an HMM to tag, we observe w, and need to find t

Directed graphical models

Graphical models are a **notation for probability models**.

In a **directed** graphical model, each node represents a distribution over a random variable:

- $P(X) = \text{node}$

Arrows represent dependencies (they define what other random variables the current node is conditioned on)

- $P(Y) P(X | Y) = \text{arrow}$

- $P(Y) P(Z) P(X | Y, Z) = \text{arrow}$

Shaded nodes represent observed variables.

White nodes represent hidden variables

- $P(Y) P(X | Y)$ with Y hidden and X observed

Models for sequence labeling

Sequence labeling: Given an input sequence $w = w^{(1)} \ldots w^{(n)}$, predict the best (most likely) label sequence $t = t^{(1)} \ldots t^{(n)}$

$$\arg\max_t P(t | w)$$

Generative models use Bayes Rule:

$$\arg\max_t P(t | w) = \arg\max_t \frac{P(t, w)}{P(w)} = \arg\max_t P(t, w) = \arg\max_t P(t) P(w | t)$$

Discriminative (conditional) models model $P(t | w)$ directly
Advantages of discriminative models

We’re usually not really interested in $P(w \mid t)$.
– w is given. We don’t need to predict it!
Why not model what we’re actually interested in: $P(t \mid w)$

Modeling $P(w \mid t)$ well is quite difficult:
– Prefixes (capital letters) or suffixes are good predictors for certain classes of t (proper nouns, adverbs,…)
– These features may also help us deal with unknown words
– But these features may not be independent (e.g. they are overlapping)

Modeling $P(t \mid w)$ should be easier:
– Now we can incorporate arbitrary features of the word, because we don’t need to predict w anymore

Discriminative probability models

A discriminative or conditional model of the labels t given the observed input string w models $P(t \mid w) = \prod_i P(t(i) \mid w(i), t(i-1))$ directly.

Probabilistic classification

Classification:
Predict a class (label) c for an input x
There are only a (small) finite number of possible class labels

Probabilistic classification:
– Model the probability $P(c \mid x)$
$P(c \mid x)$ is a probability if $0 \leq P(c \mid x) \leq 1$, and $\sum_i P(c_i \mid x) = 1$
– Return the class $c^* = \arg\max_i P(c_i \mid x)$
that has the highest probability

There are different ways to model $P(c \mid x)$.
MEMMs and CRFs are based on logistic regression
Using features

Think of feature functions as useful questions you can ask about the input x:

- **Binary feature functions**:

 $f_{\text{first-letter-capitalized}}(\text{Urbana}) = 1$

 $f_{\text{first-letter-capitalized}}(\text{computer}) = 0$

- **Integer (or real-valued) features**:

 $f_{\text{number-of-vowels}}(\text{Urbana}) = 3$

Which specific feature functions are useful will depend on your task (and your training data).

From features to probabilities

We associate a real-valued weight w_{ic} with each feature function $f_i(x)$ and output class c

Note that the feature function $f_i(x)$ does not have to depend on c as long as the weight does (note the double index w_{ic})

This gives us a real-valued score for predicting class c for input x: $\text{score}(x,c) = \sum_i w_{ic} f_i(x)$

This score could be negative, so we exponentiate it: $\text{score}(x,c) = \exp(\sum_i w_{ic} f_i(x))$

To get a probability distribution over all classes c, we renormalize these scores:

$$P(c \mid x) = \frac{\text{score}(x,c)}{\sum_j \text{score}(x,c_j)} = \frac{\exp(\sum_i w_{ic} f_i(x))}{\sum_j \exp(\sum_i w_{ij} f_i(x))}$$

Learning: finding w

Learning = finding weights w

We use conditional maximum likelihood estimation (and standard convex optimization algorithms) to find/learn w

(for more details, attend CS446 and CS546)

The conditional MLE training objective:

Find the w that assigns highest probability to all observed outputs c_i given the inputs x_i

$$\hat{w} = \arg \max_w \prod_i P(c_i \mid x_i, w)$$

Terminology

Models that are of the form

$$P(c \mid x) = \frac{\text{score}(x,c)}{\sum_j \text{score}(x,c_j)} = \frac{\exp(\sum_i w_{ic} f_i(x))}{\sum_j \exp(\sum_i w_{ij} f_i(x))}$$

are also called **loglinear models**, **Maximum Entropy (MaxEnt) models**, or **multinomial logistic regression models**.

CS446 and CS546 should give you more details about these.

The normalizing term $\sum_j \exp(\sum_i w_{ij} f_i(x))$ is also called the **partition function** and is often abbreviated as Z
Maximum Entropy Markov Models

MEMMs use a MaxEnt classifier for each $P(t_{i} | w_{i}, t_{i-1})$:

$$P(t_{i} = t_{k} | t_{i-1}, w_{i}) = \frac{\exp(\sum_{j} \lambda_{jk} f_{j}(t_{i-1}, w_{i}))}{\sum_{t} \exp(\sum_{j} \lambda_{jk} f_{j}(t_{i-1}, w_{i}))}$$

Since we use w to refer to words, let's use λ_{jk} as the weight for the feature function $f_{j}(t_{i-1}, w_{i})$ when predicting tag t_{k}:

Viterbi for MEMMs

$\text{trellis}[n][i]$ stores the probability of the most likely (Viterbi) tag sequence $t^{(1)}...t^{(n)}$ that ends in tag t_{i} for the prefix $w^{(1)}...w^{(n)}$

Remember that we do not generate w in MEMMs. So:

$$\text{trellis}[n][i] = \max_{t_1...t_{n-2}} [P(t^{(1)}...t^{(n-1)}, t^{(n)}=t_{i} | w^{(1)}...w^{(n)})]$$

$$= \max_{j} [\text{trellis}[n-1][j] \times P(t_{i} | t_{j}, w^{(n)})]$$

$$= \max_{j} [\max_{t_1...t_{n-2}} [P(t^{(1)}...t^{(n-2)}, t^{(n-1)}=t_{j} | w^{(1)}...w^{(n-1)})] \times P(t_{i} | t_{j}, w^{(n)})]$$

Today’s key concepts

Sequence labeling tasks:
- POS tagging
- NP chunking
- Shallow Parsing
- Named Entity Recognition

Discriminative models:
- Maximum Entropy classifiers
- MEMMs