Lecture 8: The Forward-Backward algorithm

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Wednesday’s key concepts

HMM taggers

Learning HMMs from labeled text

Viterbi for HMMs
 Dynamic programming
 Independence assumptions in HMMs
 The trellis
Recap: Learning an HMM from labeled data

We count how often we see \(t_{ij} \) and \(w_{j\cdot t_i} \) etc. in the data (use relative frequency estimates):

Transition probabilities:\[
P(t_j | t_i) = \frac{C(t_i t_j)}{C(t_i)}
\]

Emission probabilities:\[
P(w_j | t_i) = \frac{C(w_{j\cdot t_i})}{C(t_i)}
\]

Initial state probabilities:\[
\pi(t_i) = \frac{C(\text{Tag of first word } = t_i)}{\text{Number of sentences}}
\]
Recap: The Viterbi algorithm

What: Viterbi finds the **most likely tag sequence** \(t^* = t^{(1)} \ldots t^{(N)} \) for an input sentence (word sequence) \(w = w^{(1)} \ldots w^{(N)} \)

\[
t^* = \arg\max_t P(t \mid w) = \arg\max_t P(t)P(w \mid t)
\]

The most likely tag sequence is also called the Viterbi sequence

How: Viterbi is a **dynamic programming** algorithm that uses a \(N \times T \) **trellis** (table) in which each cell \(\text{trellis}[n][i] \) stores:

- the **probability** of the most likely (Viterbi) tag sequence for the prefix \(w^{(1)} \ldots w^{(n)} \) that ends in tag \(t_i \)

- and a **backpointer** to the cell \(\text{trellis}[n-1][j] \), where \(t^{(n-1)} = t_j \) is the tag of word \(w^{(n-1)} \) in this Viterbi sequence

The cell \(\text{trellis}[N][i] \) with the largest probability in the last column tells us which tag \(t^{(N)} = t_i \) the Viterbi sequence \(t^* \) of \(w \) ends in. We extract \(t^* \) by following the backpointers.
Viterbi

\(\text{trellis}[n][i] \) stores the probability of the most likely (Viterbi) tag sequence \(t^{(1)} \ldots t^{(n)} \) that ends in tag \(t_i \) for the prefix \(w^{(1)} \ldots w^{(n)} \)

\[
\text{trellis}[n][i] = \max_{t^{(1)} \ldots (n-1)} \left[P(w^{(1)} \ldots (n), t^{(1)} \ldots (n-1), t^{(n)} = t_i) \right]
\]

\[
= \max_j \left[\text{trellis}[n-1][j] \times P(t_i | t_j) \right] \times P(w^{(n)} | t_i)
\]

\[
= \max_j \left[\max_{t^{(1)} \ldots (n-2)} \left[P(w^{(1)} \ldots (n-1), t^{(1)} \ldots (n-2), t^{(n-1)} = t_j) \right] \times P(t_i | t_j) \right] \times P(w^{(n)} | t_i)
\]
Today’s key concepts

The Forward algorithm: computing $P(w)$
The Forward-Backward algorithm: learning HMMs from raw text
The Forward algorithm: Computing \(P(w) \)
The Forward algorithm

The HMM defines a language model: \(P(w) = \sum_t P(t, w) \)
- To compute \(P(w) \), sum (‘marginalize’) over all tag sequences \(t \)

How can we compute \(P(w) \) efficiently?
- Use dynamic programming!

In the Viterbi algorithm, we want the probability of the best sequence for \(w^{(1)}\ldots(\text{n}) \) that ends in \(t_i \):
\[
\text{trellis}[n][i] = \max_{t(1)\ldots(n-1)}[P(w^{(1)}\ldots(\text{n}), t^{(1)}\ldots(n-1), t^{(n)}=t_i)]
\]

In the Forward algorithm, we want the total probability mass of all sequences for \(w^{(1)}\ldots(\text{n}) \) that end in \(t_i \):
\[
\text{trellis}[n][i] = \sum_{t(1)\ldots(n-1)}[P(w^{(1)}\ldots(\text{n}), t^{(1)}\ldots(n-1), t^{(n)}=t_i)]
\]
The Forward algorithm

trellis[n][i] stores the probability mass of all tag sequences $t^{(1)}...(n)$ that end in tag t_i for the prefix $w^{(1)}...w^{(n)}$

$$trellis[n][i] = \sum_{t^{(1)}..(n-1)} [P(w^{(1)}...(n), t^{(1)}...(n-1), t^{(n)}=t_i)]$$

$$= \sum_j [trellis[n-1][j] \times P(t_i | t_j)] \times P(w^{(n)} | t_i)$$

$$= \sum_j [\sum_{t^{(1)}...(n-2)} [P(w^{(1)}...(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_j)] \times P(t_i | t_j)] \times P(w^{(n)} | t_i)$$

Last step: computing $P(w)$:

$$P(w^{(1)}...(N)) = \sum_j trellis[N][j]$$
Learning an HMM from raw text
Learning an HMM from *unlabeled* text

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

We can’t count anymore. We have to *guess* how often we’d *expect* to see t_it_j etc. in our data set.

Call this *expected count* $\langle C(\ldots) \rangle$

- Our estimate for the transition probabilities:
 \[
 \hat{P}(t_j|t_i) = \frac{\langle C(t_it_j) \rangle}{\langle C(t_i) \rangle}
 \]

- Our estimate for the emission probabilities:
 \[
 \hat{P}(w_j|t_i) = \frac{\langle C(w_jt_i) \rangle}{\langle C(t_i) \rangle}
 \]

- Our estimate for the initial state probabilities:
 \[
 \pi(t_i) = \frac{\langle C(\text{Tag of first word } = t_i) \rangle}{\text{Number of sentences}}
 \]
Learning HMMs from raw text

Chicken-and-Egg problem:
We need a probability model to compute expected counts $\langle C(...) \rangle$

Solution: iterative hill-climbing

– Start with an initial model $\lambda^{(0)}$ to compute expectations.
– Use these expectations to recompute a new model.
– Iterate: Use this model to compute new expectations,…
(N.B.: this yields a Maximum-Likelihood estimate)

Hill-climbing:
Each iteration yields a model $\lambda^{(t+1)}$ that assigns at least as much probability (likelihood) to the training data as $\lambda^{(t)}$.
This is an instance of the Expectation-Maximization (EM) algorithm
Learning an HMM:
the EM algorithm

Initialization:
- Take a data set S
- Guess initial parameters $A^{(0)}$, $B^{(0)}$, $\pi^{(0)}$

 These define the HMM $\lambda^{(i)} = \lambda^{(0)} = (A^{(0)}, B^{(0)}, \pi^{(0)})$

The Expectation (E) step:
- Use $\lambda^{(i)}$ to compute expected counts
 $\langle C(t) \mid \lambda^{(i)}, S \rangle$ and $\langle C(w, t) \mid \lambda^{(i)}, S \rangle$ for all words w and tags t

The Maximization (M) step
- Estimate a new HMM $\lambda^{(i+1)}$ from $\langle C(t) \mid \lambda^{(i)}, S \rangle$, $\langle C(w, t) \mid \lambda^{(i)}, S \rangle$

Repeat the E and M steps until λ converges
Computing $\langle C(w, t) | \lambda^{(i)}, S \rangle$, $\langle C(t) | \lambda^{(i)}, S \rangle$

$\langle C(t) | \lambda^{(i)}, S \rangle = \sum_{w} \langle C(w, t) | \lambda^{(i)}, S \rangle$

How often do we expect to see tag t in the corpus S?
\rightarrow Sum over all words w

$\langle C(w, t) | \lambda^{(i)}, S \rangle = \sum_{j} \langle C(w, t) | \lambda^{(i)}, S_{j} \rangle$

How often do we expect to see tag t with a specific word w in corpus S?
\rightarrow Sum over all sentences S_{j} in S

$\langle C(w, t) | \lambda^{(i)}, S_{j} \rangle = \sum_{k: w^{(k)} = w} \langle C(w, t) | \lambda^{(i)}, S_{j} \rangle$

How often do we expect to see tag t with a specific word w in sentence S_{j}?
\rightarrow Sum over all positions k in S_{j} that are occupied by w ($w^{(k)}$ is equal to w).
Computing $\langle C(w^{(k)} = w, t^{(k)} = t) \mid \lambda^{(i)}, S_j \rangle$

$\langle C(w^{(k)} = w, t^{(k)} = t) \mid \lambda^{(i)}, S_j \rangle$: How often do we expect to see tag t in position k in sentence S_j?

Supervised learning:
$w^{(k)}$ has tag $t^{(k)}$, hence $C(w^{(k)}, t^{(k)}) = 1$

Unsupervised learning:
$w^{(k)}$ can have any tag t, hence $\sum_i \langle C(w^{(k)}, t_i) \rangle = 1$
$\langle C(w^{(k)}, t) \rangle$ is the conditional probability of tag t in position k (in sentence S_j).
How do we compute $\langle C(t, w^{(i)}) | w \rangle$?

- With a slight abuse of notation, I’m using $\langle C(t, w^{(i)}) | w \rangle$ to refer to the expected count of tag t occurring with the i-th word in $w = w^{(1)}...w^{(i)}...w^{(N)}$.
- We need to look at the k-th cell in the row corresponding to tag t.

<table>
<thead>
<tr>
<th></th>
<th>$w^{(1)}$</th>
<th>...</th>
<th>$w^{(i-1)}$</th>
<th>$w^{(i)}$</th>
<th>$w^{(i+1)}$</th>
<th>...</th>
<th>$w^{(N)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How do we compute $\langle C(t, w^{(i)}) | w \rangle$

$\langle C(t, w^{(i)}) | w \rangle$ is equal to the conditional probability that the i-th tag for w ($w^{(i)}$'s tag) is t:

$$\langle C(t, w^{(i)}) | w \rangle = P(t^{(i)} = t | w)$$

$$= P(t^{(i)} = t, w)/P(w)$$

$P(t^{(i)} = t, w)$ is the total probability mass of w with any of the tag sequences for w where the i-th tag is t

The forward algorithm tells us how to compute $P(w)$
How do we compute \(\langle C(t, w^{(i)}) \mid w \rangle \)

\(P(t^{(i)} = t, w) \) is the total probability mass of all tag sequences for \(w \) where the \(i \)-th tag is \(t \)

This decomposes into two terms

\[
P(t^{(i)} = t, w) = P(t^{(i)} = t, w^{(1)}...^{(i)}) \cdot P(w^{(i+1)}...^{(N)} \mid t^{(i)} = t)
\]

The first term \(P(t^{(i)} = t, w^{(1)}...^{(i)}) \) is the probability mass of the prefix \(w^{(1)}...^{(i)} \) with all tag sequences \(t^{(1)}...^{(i)} \) that end in \(t \)

We can get this from the cell corresponding to \(w^{(i)} \) and \(t \) in the forward trellis: \(P(t^{(i)} = t, w^{(1)}...^{(i)}) = \text{forward}[i][t] \)

The second term \(P(w^{(i+1)}...^{(N)} \mid t^{(i)} = t) \) is the probability mass of the suffix \(w^{(i+1)}...^{(N)} \) with all tag sequences \(t^{(i+1)}...^{(N)} \) given that \(t^{(i)} = t \)
How do we compute $\langle C(t, w^{(i)}) \mid w \rangle$

$$P(t^{(i)} = t, w) = P(t^{(i)} = t, w^{(1)}...^{(i)}) \cdot P(w^{(i+1)}...(N) \mid t^{(i)} = t)$$

$P(t^{(i)} = t, w^{(1)}...^{(i)}) = \text{forward}[i][t]$ is the **forward probability** of t and $w^{(i)}$

computed by the **forward algorithm**

Correspondingly,

$P(w^{(i+1)}...(N) \mid t^{(i)} = t) = \text{backward}[i][t]$ is the **backward probability** of t and $w^{(i)}$

computed by the **backward algorithm**
The forward algorithm

The forward trellis is filled from left to right. forward[i][t] provides $P(t(i) = t, w(1)...(i))$

Initialization (first column):
forward[1][t] = $\pi(t)P(w(1) | t)$

Recursion (any other column):
forward[i][t] = $P(w(i) | t) \times \sum_{t'} P(t | t') \times \text{forward}[i-1][t']$
The backward algorithm

The backward trellis is filled from right to left. backward[i][t] provides \(P(w^{(i+1)\ldots(N)} | t_i = t) \)

\[
\text{NB: } \sum_t \text{backward}[1][t] = P(w^{(i+1)\ldots(N)}) = \sum_t \text{forward}[N][t]
\]

Initialization (last column):
backward[N][t] = 1

Recursion (any other column):
backward[i][t] = \(\sum_{t'} P(t' | t) \times P(w^{(i+1)} | t') \times \text{backward}[i+1][t'] \)
How do we compute $\langle C(t_i) \mid w_j \rangle$?

$\langle C(t, w^{(i)}) \mid w \rangle = P(t^{(i)} = t, w)/P(w)$

with

$P(t^{(i)} = t, w) = \text{forward}[i][t] \cdot \text{backward}[i][t]$

$P(w) = \sum_t \text{forward}[N][t]$
How do we compute $P(t' \mid t)$?

How often do we expect tag t to transition to tag t'?

Summing over all sentences w, and all pairs of adjacent positions $i, (i+1)$, compute how often we expect the tag bigram “$t \ t'$” starting at position i:

Compute $\langle C(t^{(i)} = t, t^{(i+1)} = t') \mid w \rangle$

This is the same as the (conditional) probability mass of all tag sequences for w that have t and t' in the ith and $(i+1)$th position:

$\langle C(t^{(i)} = t, t^{(i+1)} = t') \mid w \rangle = P(t^{(i)} = t, t^{(i+1)} = t' \mid w)$

$= P(t_i = t, t_{i+1} = t', w) / P(w)$
Computing $P(t^{(i)} = t, t^{(i+1)} = t', w)$

The probability of all tag sequences for w that have t and t' in the ith and $(i+1)$th position factors into
- the **forward** probability $\text{forward}[i][t]$ (i.e. the probability of the prefix $w^{(1)}...(i)$ and all tag sequences $t^{(1)}...(i)$ that end in $t^{(i)} = t$)
- the **transition** probability $P(t | t')$
- the **emission** probability $P(w^{(i+1)} | t')$
- the **backward** probability $\text{backward}[i + 1][t']$ (i.e. the probability of the suffix $w^{(i+1)}...(N)$ and all tag sequences $t^{(i+1)}...(N)$ given that $t^{(i)} = t$)

$$P(t^{(i)} = t, t^{(i+1)} = t', w) = P(t^{(i)} = t, w^{(1)}...(i)) \times P(t' | t) \times P(w^{(i+1)} | t') \times P(w^{(i+2)}...(N) | t^{(i+1)} = t')$$
$$= \text{forward}[i][t] \times P(t' | t) \times P(w^{(i+1)} | t') \times \text{backward}[i+1][t']$$
Computing $\pi(t)$

We need to compute $\langle C(t^{(1)} = t) \mid w \rangle = P(t^{(1)} = t \mid w)$

Again, we get the conditional probability $P(\ldots \mid w)$ by dividing the joint probability $P(t^{(1)} = t, w)$ by $P(w)$:

$$P(t^{(1)} = t \mid w) = P(t^{(1)} = t, w)/P(w)$$

Therefore, we only need to figure out how to compute the joint probability $P(t^{(1)} = t, w)$:

$$P(t^{(1)} = t, w) = \pi(t) \times P(w^{(1)} \mid t) \times P(w^{(2)}\ldots^{(N)} \mid t^{(1)} = t)$$

$$= \pi(t) \times P(w^{(1)} \mid t) \times \text{backward}[t][1]$$
Numerical issues (EM and Viterbi)

Multiplying many small probabilities together leads to numerical problems, since the floating numbers are likely to underflow.

We therefore typically operate in log space: instead of multiplying probabilities $p(...)$, sum the corresponding log probabilities $\log p(...)$

We still have to compute $\log(X + Y)$ (see next slide)
Computing $\log(X+Y)$ from $\log(X), \log(Y)$

from https://facwiki.cs.byu.edu/nlp/index.php/Log_Domain_Computations

```java
public static double logAdd(double logX, double logY) {
    // 1. make X the max
    if (logY > logX) {
        double temp = logX;
        logX = logY;
        logY = temp;
    }
    // 2. now X is bigger
    if (logX == Double.NEGATIVE_INFINITY) {
        return logX;
    }
    // 3. how far "down" (think decibels) is logY from logX?
    //    if it's really small (20 orders of magnitude smaller), then ignore
    double negDiff = logY - logX;
    if (negDiff < -20) {
        return logX;
    }
    // 4. otherwise use some nice algebra to stay in the log domain
    //    (except for negDiff)
    return logX + java.lang.Math.log(1.0 + java.lang.Math.exp(negDiff));
}
```
Today’s lecture

The Forward algorithm:
 Computing $P(w)$

The Forward-Backward algorithm:
 Learning HMMs from raw text
 Uses the Forward algorithm and the Backward algorithm

Required reading: Ch. 6.1-5
Optional reading: Manning & Schütze, Chapter 9