Lecture 9: Sequence Labeling

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Tuesday’s key concepts

The Forward algorithm:
 Computing $P(w)$

The Forward-Backward algorithm:
 Learning HMMs from raw text
 Uses the Forward algorithm and the Backward algorithm
The importance of tag dictionaries

Forward-Backward assumes that each tag can be assigned to any word.
No guarantee that the learned HMM bears any resemblance to the tags we want to get out of a POS tagger.
A tag dictionary lists the possible POS tags for words.
Even a partial dictionary that lists only the tags for the most common words and contains at least a few words for each tag provides enough constraints to get significantly closer to a model that produces linguistically correct (and hence useful) POS tags.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>DT</td>
<td>back</td>
<td>JJ, NN, VB, VBP, RP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>an</td>
<td>DT</td>
<td>bank</td>
<td>NN, VB, VBP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>CC</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>America</td>
<td>NNP</td>
<td>zebra</td>
<td>NN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sequence labeling
Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Task: assign POS tags to words
Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Task: identify all non-recursive NP chunks
The BIO encoding

We define three new tags:

- **B-NP**: beginning of a noun phrase chunk
- **I-NP**: inside of a noun phrase chunk
- **O**: outside of a noun phrase chunk

Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Task: identify all non-recursive NP, verb ("VP") and preposition ("PP") chunks
The BIO encoding for shallow parsing

We define several new tags:
- **B-NP B-VP B-PP**: beginning of an NP, “VP”, “PP” chunk
- **I-NP I-VP I-PP**: inside of an NP, “VP”, “PP” chunk
- **O**: outside of any chunk

```
[NP Pierre Vinken], [NP 61 years] old, [VP will join] [NP IBM] ‘s [NP board] [PP as] [NP a nonexecutive director] [NP Nov. 2].
```

```
Pierre_B-NP Vinken_I-NP ,_O 61_B-NP years_I-NP old_O ,_O will_B-VP join_I-VP IBM_B-NP ’s_O board_B-NP as_B-PP a_B-NP nonexecutive_I-NP director_I-NP Nov._B-NP 29_I-NP ._O
```
Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Task: identify all mentions of named entities (people, organizations, locations, dates)
The BIO encoding for NER

We define many new tags:

- **B-PERS, B-DATE, ...**: beginning of a mention of a person/date...
- **I-PERS, I-DATE, ...**: inside of a mention of a person/date...
- **O**: outside of any mention of a named entity

Pierre_B-PERS Vinken_I-PERS _O 61_O years _O old _O , will join \n[ORG IBM] ‘s board as a nonexecutive director \n[DATE Nov. 2] .
Many NLP tasks are sequence labeling tasks

Input: a sequence of tokens/words:
Pierre Vinken, 61 years old, will join IBM’s board as a nonexecutive director Nov. 29.

Output: a sequence of **labeled** tokens/words:

POS-tagging: Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_, will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD _.

Named Entity Recognition: Pierre_B-PERS Vinken_I-PERS ,_O 61_0 years_0 old_0 ,_O will_0 join_0 IBM_B-ORG ‘s_0 board_0 as_0 a_0 nonexecutive_0 director_0 Nov._B-DATE 29_I-DATE _. _O
Graphical models for sequence labeling
Directed graphical models

Graphical models are a notation for probability models. In a directed graphical model, each node represents a distribution over a random variable:

- \(P(X) = \) \(\boxed{X} \)

Arrows represent dependencies (they define what other random variables the current node is conditioned on)

- \(P(Y) \ P(X \mid Y) = \)

- \(P(Y) \ P(Z) \ P(X \mid Y, Z) = \)

Shaded nodes represent observed variables. White nodes represent hidden variables

- \(P(Y) \ P(X \mid Y) \) with Y hidden and X observed = \(\boxed{Y} \rightarrow \boxed{X} \)
HMMs as graphical models

HMMs are **generative** models of the observed input string w

They ‘generate’ w with $P(w,t) = \prod_i P(t(i)|t(i-1))P(w(i)|t(i))$

When we use an HMM to tag, we observe w, and need to find t
Models for sequence labeling

Sequence labeling: Given an input sequence \(w = w^{(1)} \ldots w^{(n)} \), predict the best (most likely) label sequence \(t = t^{(1)} \ldots t^{(n)} \)

\[
\arg \max_t P(t|w)
\]

Generative models use Bayes Rule:

\[
\arg \max_t P(t|w) = \arg \max_t \frac{P(t, w)}{P(w)} = \arg \max_t P(t, w) = \arg \max_t P(t)P(w|t)
\]

Discriminative (conditional) models model \(P(t \mid w) \) directly
We’re usually not really interested in $P(w | t)$.
– w is given. We don’t need to predict it!
Why not model what we’re actually interested in: $P(t | w)$

Modeling $P(w | t)$ well is quite difficult:
– Prefixes (capital letters) or suffixes are good predictors for certain classes of t (proper nouns, adverbs,…)
– These features may also help us deal with unknown words
– But these features may not be independent
 (e.g. they are overlapping)

Modeling $P(t | w)$ should be easier:
– Now we can incorporate arbitrary features of the word, because we don’t need to predict w anymore
A discriminative or \textbf{conditional} model of the labels \(\mathbf{t} \) given the observed input string \(\mathbf{w} \) models

\[P(\mathbf{t} | \mathbf{w}) = \prod_i P(t^{(i)} | w^{(i)}, t^{(i-1)}) \]

directly.
Discriminative models

There are two main types of discriminative probability models:

– Maximum Entropy Markov Models (MEMMs)
– Conditional Random Fields (CRFs)

MEMMs and CRFs:

– are both based on logistic regression
– have the same graphical model
– require the Viterbi algorithm for tagging
– differ in that MEMMs consist of independently learned distributions, while CRFs are trained to maximize the probability of the entire sequence
Probabilistic classification

Classification:
Predict a class (label) c for an input x
 There are only a (small) finite number of possible class labels

Probabilistic classification:
 – Model the probability $P(c \mid x)$
 $P(c\mid x)$ is a probability if $0 \leq P(c_i \mid x) \leq 1$, and $\sum_i P(c_i \mid x) = 1$
 – Return the class $c^* = \arg\max_i P(c_i \mid x)$
 that has the highest probability

There are different ways to model $P(c \mid x)$. MEMMs and CRFs are based on logistic regression
Using features

Think of feature functions as useful questions you can ask about the input x:

- **Binary feature functions:**
 \[f_{\text{first-letter-capitalized}}(\text{Urbana}) = 1 \]
 \[f_{\text{first-letter-capitalized}}(\text{computer}) = 0 \]

- **Integer (or real-valued) features:**
 \[f_{\text{number-of-vowels}}(\text{Urbana}) = 3 \]

Which specific feature functions are useful will depend on your task (and your training data).
From features to probabilities

We associate a real-valued weight w_{ic} with each feature function $f_i(x)$ and output class c. Note that the feature function $f_i(x)$ does not have to depend on c as long as the weight does (note the double index w_{ic}). This gives us a real-valued score for predicting class c for input x: $score(x,c) = \sum_i w_{ic} f_i(x)$

This score could be negative, so we exponentiate it: $score(x,c) = \exp(\sum_i w_{ic} f_i(x))$

To get a probability distribution over all classes c, we renormalize these scores: $P(c \mid x) = score(x,c) / \sum_j score(x,c_j)$

$= \exp(\sum_i w_{ic} f_i(x)) / \sum_j \exp(\sum_i w_{ij} f_i(x))$
Learning: finding w

Learning = finding weights w

We use **conditional maximum likelihood estimation** (and standard convex optimization algorithms) to find/learn w

(for more details, attend CS446 and CS546)

The conditional MLE training objective:

Find the w that assigns highest probability to all observed outputs c_i given the inputs x_i

$$\hat{w} = \arg \max_w \prod_i P(c_i|x_i, w)$$
Terminology

Models that are of the form
\[P(c \mid x) = \frac{\text{score}(x,c)}{\sum_j \text{score}(x,c_j)} = \frac{\exp(\sum_i w_{ic} f_i(x))}{\sum_j \exp(\sum_i w_{ij} f_i(x))} \]

are also called loglinear models, Maximum Entropy (MaxEnt) models, or multinomial logistic regression models.

CS446 and CS546 should give you more details about these.

The normalizing term \(\sum_j \exp(\sum_i w_{ij} f_i(x)) \) is also called the partition function and is often abbreviated as \(Z \)
MEMMs use a MaxEnt classifier for each \(P(t^{(i)} | w^{(i)}, t^{(i-1)}) \):

Since we use \(w \) to refer to words, let’s use \(\lambda_{jk} \) as the weight for the feature function \(f_j(t^{(i-1)}, w^{(i)}) \) when predicting tag \(t_k \):

\[
P(t^{(i)} = t_k | t^{(i-1)}, w^{(i)}) = \frac{\exp(\sum_j \lambda_{jk} f_j(t^{(i-1)}, w^{(i)}))}{\sum_l \exp(\sum_j \lambda_{jl} f_j(t^{(i-1)}, w^{(i)}))}
\]
Viterbi for MEMMs

trellis[n][i] stores the probability of the most likely (Viterbi) tag sequence \(t^{(1)...(n)} \) that ends in tag \(t_i \) for the prefix \(w^{(1)}...w^{(n)} \)

Remember that we do not generate \(w \) in MEMMs. So:

\[
trellis[n][i] = \max_{t(1)...(n-1)} P(t^{(1)...(n-1)}, t^{(n)}=t_i | w^{(1)...(n)}) \\
= \max_j [\text{trellis}[n-1][j] \times P(t_i | t_j, w^{(n)})] \\
= \max_j [\max_{t(1)...(n-2)} P(t^{(1)...(n-2)}, t^{(n-1)}=t_j | w^{(1)...(n-1)}) \times P(t_i | t_j, w^{(n)})]
\]
Today’s key concepts

Sequence labeling tasks:
- POS tagging
- NP chunking
- Shallow Parsing
- Named Entity Recognition

Discriminative models:
- Maximum Entropy classifiers
- MEMMs