Lecture 8:
The Forward-Backward algorithm

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center
Tuesday’s key concepts

HMM taggers

Learning HMMs from labeled text

Viterbi for HMMs
 Dynamic programming
 Independence assumptions in HMMs
 The trellis
Recap: Learning an HMM from labeled data

We count how often we see \(t_i t_j \) and \(w_j t_i \) etc. in the data (use relative frequency estimates):

Transition probabilities:

\[
P(t_j \mid t_i) = \frac{C(t_i t_j)}{C(t_i)}
\]

Emission probabilities:

\[
P(w_j \mid t_i) = \frac{C(w_j t_i)}{C(t_i)}
\]

Initial state probabilities:

\[
\pi(t_i) = \frac{C(\text{Tag of first word } = t_i)}{\text{Number of sentences}}
\]
Recap: The Viterbi algorithm

What: Viterbi finds the **most likely tag sequence** $t^* = t^{(1)} \ldots t^{(N)}$ for an input sentence (word sequence) $w = w^{(1)} \ldots w^{(N)}$

$$t^* = \arg\max_t P(t \mid w) = \arg\max_t P(t)P(w \mid t)$$

The most likely tag sequence is also called the Viterbi sequence

How: Viterbi is a **dynamic programming** algorithm that uses a $N \times T$ **trellis** (table) in which each cell $\text{trellis}[n][i]$ stores:

- the **probability** of the most likely (Viterbi) tag sequence for the prefix $w^{(1)} \ldots w^{(n)}$ that ends in tag t_i

- and a **backpointer** to the cell $\text{trellis}[n-1][j]$, where $t^{(n-1)} = t_j$ is the tag of word $w^{(n-1)}$ in this Viterbi sequence

The cell $\text{trellis}[N][i]$ with the largest probability in the last column tells us which tag $t^{(N)} = t_i$ the Viterbi sequence t^* of w ends in. We extract t^* by following the backpointers.
Viterbi

trellis[n][i] stores the probability of the most likely (Viterbi) tag sequence $t^{(1)}...t^{(n)}$ that ends in tag t_i for the prefix $w^{(1)}...w^{(n)}$

trellis[n][i] = $\max_{t^{(1)}..(n-1)}[P(w^{(1)}...(n), t^{(1)}...(n-1), t^{(n)}=t_i)]$

= $\max_j [\text{trellis}[n-1][j] \times P(t_i | t_j)] \times P(w^{(n)} | t_i)$

= $\max_j [\max_{t^{(1)}..(n-2)}[P(w^{(1)}...(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_j)] \times P(t_i | t_j)] \times P(w^{(n)} | t_i)$

<table>
<thead>
<tr>
<th></th>
<th>$w^{(n-1)}$</th>
<th>$w^{(n)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>$\max_{t^{(1)}..(n-2)} P(w^{(1)}..(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_1)$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_i</td>
<td>$\max_{t^{(1)}..(n-2)} P(w^{(1)}..(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_i)$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_T</td>
<td>$\max_{t^{(1)}..(n-2)} P(w^{(1)}..(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_T)$</td>
<td></td>
</tr>
</tbody>
</table>
Today’s key concepts

The Forward algorithm: computing $P(w)$
The Forward-Backward algorithm: learning HMMs from raw text
The Forward algorithm: Computing $P(w)$
The Forward algorithm

The HMM defines a language model: \(P(w) = \sum_t P(t, w) \)
- To compute \(P(w) \), sum (‘marginalize’) over all tag sequences \(t \)

How can we compute \(P(w) \) efficiently?
- Use dynamic programming!

In the Viterbi algorithm, we want the probability of the \textit{best} sequence for \(w^{(1)}\ldots^{(n)} \) that ends in \(t_i \):
\[
\text{trellis}[n][i] = \max_{t(1)\ldots(n-1)} [P(w^{(1)}\ldots^{(n)}, t^{(1)}\ldots^{(n-1)}, t^{(n)}=t_i)]
\]

In the Forward algorithm, we want the total probability mass of \textit{all} sequences for \(w^{(1)}\ldots^{(n)} \) that end in \(t_i \):
\[
\text{trellis}[n][i] = \sum_{t(1)\ldots(n-1)} [P(w^{(1)}\ldots^{(n)}, t^{(1)}\ldots^{(n-1)}, t^{(n)}=t_i)]
\]
The Forward algorithm

\[\text{trellis}[n][i] \text{ stores the probability all tag sequences } t^{(1)}...^{(n)} \text{ that end in tag } t_i \text{ for the prefix } w^{(1)}...^{(n)} \]

\[
\text{trellis}[n][i] = \sum_{t^{(1)}...(n-1)} \left[P(w^{(1)}...(n), t^{(1)}...(n-1), t^{(n)}=t_i) \right] = \sum_j \left[\text{trellis}[n-1][j] \times P(t_i | t_j) \right] \times P(w^{(n)} | t_i) = \sum_j \left[\max_{t^{(1)}...(n-2)} \left[P(w^{(1)}...(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_j) \right] \times P(t_i | t_j) \right] \times P(w^{(n)} | t_i)
\]

\(t_1 \)	\(\sum t^{(1)}...(n-2) \ P(w^{(1)}...(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_1) \)
\(\vdots \)	\(\vdots \)
\(t_i \)	\(\sum t^{(1)}...(n-2) \ P(w^{(1)}...(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_i) \)
\(\vdots \)	\(\vdots \)
\(t_T \)	\(\sum t^{(1)}...(n-2) \ P(w^{(1)}...(n-1), t^{(1)}...(n-2), t^{(n-1)}=t_T) \)

Last step: computing \(P(w) \):

\[
P(w^{(1)}...(N)) = \sum_j \text{trellis}[N][j]
\]
Learning an HMM from raw text
Learning an HMM from *unlabeled* text

We can’t count anymore. We have to *guess* how often we’d *expect* to see t_it_j etc. in our data set.

Call this *expected count* $\langle C(...)\rangle$

- Our estimate for the transition probabilities:

$$\hat{P}(t_j|t_i) = \frac{\langle C(t_it_j)\rangle}{\langle C(t_i)\rangle}$$

- Our estimate for the emission probabilities:

$$\hat{P}(w_j|t_i) = \frac{\langle C(w_jt_i)\rangle}{\langle C(t_i)\rangle}$$

- Our estimate for the initial state probabilities:

$$\pi(t_i) = \frac{\langle C(\text{Tag of first word } = t_i)\rangle}{\text{Number of sentences}}$$

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Tagset:

- NNP: proper noun
- CD: numeral,
- JJ: adjective,...
Learning HMMs from raw text

Chicken-and-Egg problem:
We need a probability model to compute expected counts \(\langle C(...) \rangle \)

Solution: iterative hill-climbing
– Start with an initial model \(\lambda^{(0)} \) to compute expectations.
– Use these expectations to recompute a new model.
– Iterate: Use this model to compute new expectations,…
(N.B.: this yields a Maximum-Likelihood estimate)

Hill-climbing:
Each iteration yields a model \(\lambda^{(t+1)} \) that assigns at least as much probability (likelihood) to the training data as \(\lambda^{(t)} \).
This is an instance of the Expectation-Maximization (EM) algorithm
Learning an HMM: the EM algorithm

Initialization:
- Take a data set S
- Guess initial parameters $A^{(0)}$, $B^{(0)}$, $\pi^{(0)}$
 These define the HMM $\lambda^{(i)} = \lambda^{(0)} = (A^{(0)}, B^{(0)}, \pi^{(0)})$

The Expectation (E) step:
- Use $\lambda^{(i)}$ to compute expected counts
 $\langle C(t) \mid \lambda^{(i)}, S \rangle$ and $\langle C(w, t) \mid \lambda^{(i)}, S \rangle$ for all words w and tags t

The Maximization (M) step
- Estimate a new HMM $\lambda^{(i+1)}$ from $\langle C(t) \mid \lambda^{(i)}, S \rangle$, $\langle C(w, t) \mid \lambda^{(i)}, S \rangle$

Repeat the E and M steps until λ converges
Computing $\langle C(w,t) \mid \lambda^{(i)}, S \rangle, \langle C(t) \mid \lambda^{(i)}, S \rangle$

$\langle C(t) \mid \lambda^{(i)}, S \rangle = \sum_w \langle C(w, t) \mid \lambda^{(i)}, S \rangle$

How often do we expect to see tag t in the corpus S?
→ Sum over all words w

$\langle C(w, t) \mid \lambda^{(i)}, S \rangle = \sum_j \langle C(w, t) \mid \lambda^{(i)}, S_j \rangle$

How often do we expect to see tag t with a specific word w in corpus S?
→ Sum over all sentences S_j in S

$\langle C(w, t) \mid \lambda^{(i)}, S_j \rangle = \sum_{k: w(k) = w} \langle C(w, t) \mid \lambda^{(i)}, S_j \rangle$

How often do we expect to see tag t with a specific word w in sentence S_j?
→ Sum over all positions k in S_j that are occupied by w ($w^{(k)}$ is equal to w).
Computing $\langle C(w^{(k)} = w, t^{(k)} = t) \mid \lambda^{(i)}, S_j \rangle$

$\langle C(w^{(k)} = w, t^{(k)} = t) \mid \lambda^{(i)}, S_j \rangle$:
How often do we expect to see tag t in position k in sentence S_j?

Supervised learning:
$w^{(k)}$ has tag $t^{(k)}$, hence $C(w^{(k)}, t^{(k)}) = 1$

Unsupervised learning:
$w^{(k)}$ can have any tag t, hence $\Sigma_i \langle C(w^{(k)}, t_i) \rangle = 1$
$\langle C(w^{(k)}, t) \rangle$ is the conditional probability of tag t in position k (in sentence S_j).
How do we compute $\langle C(t, w^{(i)}) \mid w \rangle$?

- With a slight abuse of notation, I’m using $\langle C(t, w^{(i)}) \mid w \rangle$ to refer to the expected count of tag t occurring with the i-th word in $w = w^{(1)}...w^{(i)}...w^{(N)}$
- We need to look at the k-th cell in the row corresponding to tag t
How do we compute $\left\langle C(t, w^{(i)}) \mid w \right\rangle$

$\left\langle C(t, w^{(i)}) \mid w \right\rangle$ is equal to the conditional probability that the i-th tag for w ($w^{(i)}$‘s tag) is t:

$$\left\langle C(t, w^{(i)}) \mid w \right\rangle = P(t^{(i)} = t \mid w)$$

$$= P(t^{(i)} = t, w)/P(w)$$

$P(t^{(i)} = t, w)$ is the total probability mass of w with any of the tag sequences for w where the i-th tag is t

The forward algorithm tells us how to compute $P(w)$
How do we compute $\langle C(t, w^{(i)}) | w \rangle$

$P(t^{(i)} = t, w)$ is the total probability mass of all tag sequences for w where the i-th tag is t

This decomposes into two terms

$$P(t^{(i)} = t, w) = P(t^{(i)} = t, w^{(1)}...(i)) P(w^{(i+1)...(N)} | t^{(i)} = t)$$

The first term $P(t^{(i)} = t, w^{(1)}...(i))$ is the probability mass of the prefix $w^{(1)}...(i)$ with all tag sequences $t^{(1)}...(i)$ that end in t

We can get this from the cell corresponding to $w^{(i)}$ and t in the forward trellis: $P(t^{(i)} = t, w^{(1)}...(i)) = \text{forward}[i][t]$

The second term $P(w^{(i+1)...(N)} | t^{(i)} = t)$ is the probability mass of the suffix $w^{(i+1)...(N)}$ with all tag sequences $t^{(i+1)...(N)}$ given that $t^{(i)} = t$
How do we compute $\langle C(t, w^{(i)}) \mid w \rangle$

$$P(t^{(i)} = t, w) = P(t^{(i)} = t, w^{(1)}...(i)) \cdot P(w^{(i+1)}...(N) \mid t^{(i)} = t)$$

$P(t^{(i)} = t, w^{(1)}...(i)) = \text{forward}[i][t]$ is the \textbf{forward probability} of t and $w^{(i)}$ computed by the \textbf{forward algorithm}

Correspondingly,

$P(w^{(i+1)}...(N) \mid t^{(i)} = t) = \text{backward}[i][t]$ is the \textbf{backward probability} of t and $w^{(i)}$ computed by the \textbf{backward algorithm}
The forward algorithm

The forward trellis is filled from left to right.

\[\text{forward}[i][t] \text{ provides } P(t^{(i)} = t, \ w^{(1)}...^{(i)}) \]

Initialization (first column):

\[\text{forward}[1][t] = \pi(t)P(w^{(1)} | t) \]

Recursion (any other column):

\[\text{forward}[i][t] = P(w^{(i)} | t) \times \sum_{t'}P(t | t') \times \text{forward}[i-1][t'] \]

<table>
<thead>
<tr>
<th></th>
<th>(w^{(1)})</th>
<th>...</th>
<th>(w^{(i-1)})</th>
<th>(w^{(i)})</th>
<th>(w^{(i+1)})</th>
<th>...</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The backward algorithm

The backward trellis is filled from right to left.

\[\text{backward}[i][t] \text{ provides } P(w^{(i+1)\ldots(N)} | t_i = t) \]

\[\text{NB: } \sum_t \text{backward}[1][t] = P(w^{(i+1)\ldots(N)}) = \sum_t \text{forward}[N][t] \]

Initialization (last column):

\[\text{backward}[N][t] = 1 \]

Recursion (any other column):

\[\text{backward}[i][t] = \sum_{t'} P(t' | t) \times P(w^{(i+1)} | t') \times \text{backward}[i+1][t'] \]
How do we compute \(\langle C(t_i) | w_j \rangle \)

\[
\langle C(t, w^{(i)}) | w \rangle = \frac{P(t^{(i)} = t, w)}{P(w)}
\]

with

\[
P(t^{(i)} = t, w) = \text{forward}[i][t] \times \text{backward}[i][t]
\]

\[
P(w) = \sum_t \text{forward}[N][t]
\]
How do we compute $P(t' | t)$?

How often do we expect tag t to transition to tag t'?

Summing over all sentences w, and all pairs of adjacent positions i, $(i+1)$, compute how often we expect the tag bigram “$t \ t'$” starting at position i:

Compute $\langle C(t^{(i)} = t, \ t^{(i+1)} = t') \ | \ w \rangle$

This is the same as the (conditional) probability mass of all tag sequences for w that have t and t' in the ith and $(i+1)$th position:

$\langle C(t^{(i)} = t, \ t^{(i+1)} = t') \ | \ w \rangle = P(\ t^{(i)} = t, \ t^{(i+1)} = t' \ | \ w)$

$= P(\ t_i = t, \ t_{i+1} = t' , \ w)/ P(\ w)$
Computing $P(t^{(i)} = t, t^{(i+1)} = t', w)$

The probability of all tag sequences for w that have t and t' in the ith and $(i+1)$th position factors into
- the **forward** probability $\text{forward}[i][t]$

 (i.e. the probability of the prefix $w^{(1)}...(i)$ and
 all tag sequences $t^{(1)}...(i)$ that end in $t^{(i)} = t$)

- the **transition** probability $P(t | t')$

- the **emission** probability $P(w^{(i+1)} | t')$

- the **backward** probability $\text{backward}[i + 1][t']$

 (i.e. the probability of the suffix $w^{(i+1)}...(N)$ and
 all tag sequences $t^{(i+1)}...(N)$ given that $t^{(i)} = t$)

$$P(t^{(i)} = t, t^{(i+1)} = t', w)$$

$$= P(t^{(i)} = t, w^{(1)}...(i)) \times P(t' | t) \times P(w^{(i+1)} | t') \times P(w^{(i+2)}...(N) | t^{(i+1)} = t')$$

$$= \text{forward}[i][t] \times P(t' | t) \times P(w^{(i+1)} | t') \times \text{backward}[i+1][t']$$
Computing $\pi(t)$

We need to compute $\langle C(t^{(1)} = t) \mid \mathbf{w} \rangle = P(t^{(1)} = t \mid \mathbf{w})$

Again, we get the conditional probability $P(\ldots \mid \mathbf{w})$ by dividing the joint probability $P(t^{(1)} = t, \mathbf{w})$ by $P(\mathbf{w})$:

$$P(t^{(1)} = t \mid \mathbf{w}) = \frac{P(t^{(1)} = t, \mathbf{w})}{P(\mathbf{w})}$$

Therefore, we only need to figure out how to compute the joint probability $P(t^{(1)} = t, \mathbf{w})$:

$$P(t^{(1)} = t, \mathbf{w}) = \pi(t) \times P(w^{(1)} \mid t) \times P(w^{(2)}\ldots(N) \mid t^{(1)} = t)$$

$$= \pi(t) \times P(w^{(1)} \mid t) \times \text{backward}[t][1]$$
Numerical issues (EM and Viterbi)

Multiplying many small probabilities together leads to numerical problems, since the floating numbers are likely to underflow.

We therefore typically operate in log space: instead of multiplying probabilities $p(...)$, sum the corresponding log probabilities $\log p(...)$

We still have to compute $\log(X + Y)$ (see next slide)
Computing $\log(X+Y)$ from $\log(X),\log(Y)$

from https://facwiki.cs.byu.edu/nlp/index.php/Log_Domain_Computations

```java
public static double logAdd(double logX, double logY) {
    // 1. make X the max
    if (logY > logX) {
        double temp = logX;
        logX = logY;
        logY = temp;
    }
    // 2. now X is bigger
    if (logX == Double.NEGATIVE_INFINITY) {
        return logX;
    }
    // 3. how far "down" (think decibels) is logY from logX?
    //    if it's really small (20 orders of magnitude smaller), then ignore
    double negDiff = logY - logX;
    if (negDiff < -20) {
        return logX;
    }
    // 4. otherwise use some nice algebra to stay in the log domain
    //    (except for negDiff)
    return logX + java.lang.Math.log(1.0 + java.lang.Math.exp(negDiff));
}
```
Today’s lecture

The Forward algorithm:
 Computing P(w)

The Forward-Backward algorithm:
 Learning HMMs from raw text
 Uses the Forward algorithm and the Backward algorithm

Required reading: Ch. 6.1-5
Optional reading: Manning & Schütze, Chapter 9