
CS446: Machine Learning Spring 2015

Problem Set 0: Solution

1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ.

a. What is the probability of obtaining the first head at the (k + 1)-th toss?

b. What is the expected number of tosses needed to get the first head?

Solution:

a.
Pr(k tails in the first k tosses, then 1 head) = (1− λ)kλ

b. Let M be the number of the tosses required to get the first head and let S = E[M ].
Given that tosses are independent, and expectation is additive:

S = λ× 1 + (1− λ)× (S + 1)

Solving for S gives S = 1
λ
.

2. [Probability] Assume X is a random variable.

a. We define the variance of X as: V ar(X) = E[(X−E[X])2]. Prove that V ar(X) =
E[X2]− E[X]2.

b. If E[X] = 0 and E[X2] = 1, what is the variance of X? If Y = a + bX, what is
the variance of Y ?

Solution:

a. Directly from the definition of variance:

E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2] = E[X2]− 2E[XE[X]] + E[X]2

= E[X2]− 2E[X]2 + E[X]2 = E[X2]− E[X]2 (1)

where the second equality makes use of the additivity of expectations and the
third makes use of the fact that E[X] is a constant.

b. Substituting the values for E[X] and E[X2] in Eq. 1, we get

V ar(X) = E[X2]− E[X]2 = 1

If Y = a+ bX,

E[Y 2] = E[(a+ bX)2] = E[a2 + 2abX + b2X2]

= a2 + 2abE[X] + b2E[X2] = a2 + b2

E[Y ] = E[a+ bX] = a+ bE[X] = a

V ar(Y ) = E[Y 2]− E[Y ]2 = a2 + b2 − a2 = b2
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3. [Probability] John is a great fortune teller. Assume that we know three facts: 1) If
John tells you that a lottery ticket will win, it will win with probability 0.99. 2) If John
tells you that a lottery ticket will not win, it will not win with probability 0.99999.
3) With probability 10−5, John predicts that a ticket as a winning ticket. This also
means that with probability 1− 10−5, John predicts that a ticket will not win.

a. Given a ticket, what is the probability that it wins?

b. What is the probability that John correctly predicts a winning ticket?

Solution: Let T be the event “John predicts that a given ticket is a winning ticket”.
Let ¬T be the event “John predicts that a given ticket is not a winning ticket”. Sim-
ilarly, let W be the event that the given ticket wins and ¬W be the event that the
given ticket does not win. Then:

a. Given a ticket, the probability that it wins is:

P (W ) = P (W,T ) + P (W,¬T ) = P (W | T )P (T ) + P (W | ¬T )P (¬T )

= 0.99× 10−5 + (1− 0.99999)× (1− 10−5)

≈ 1.99× 10−5

b. The probability that John correctly predicts a winning ticket is:

P (T |W ) =
P (T,W )

P (W )
=
P (W | T )P (T )

P (W )

=
0.99× 10−5

0.99× 10−5 + (1− 0.99999)× (1− 10−5)
≈ 0.497

4. [Calculus] Let f(x, y) = 3x2 + y2 − xy − 11x

a. Find ∂f
∂x

, the partial derivative of f with respect to x. Find ∂f
∂y

.

b. Find (x, y) ∈ R2 that minimizes f .

Solution: This question serves as a review of multivariate calculus.

a. ∂f
∂x

= 6x− y − 11 ∂f
∂y

= 2y − x
b. Recall from basic calculus that a function attains its maxima and minima at

points where the derivative is zero. Setting the derivative from (a.) to zero, we
see that f is maximized or minimized at (x, y) = (2, 1).

One approach to show that this point is a minimizer is to consider the matrix of
second derivatives, the Hessian, and show that it is positive definite. In our case,
the Hessian is

Hf =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]
=

[
6 −1
−1 2

]
This matrix is positive definite for all (x, y) because the principal minors are
positive. (This is just one way of showing that a matrix is positive definite. What
are the other ways?)
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5. [Linear Alegbra] Assume that w ∈ Rn and b is a scalar. A hyper-plane in Rn is the
set, {x : x ∈ Rn, wTx+ b = 0}.

a. For n = 2 and 3, find two example hyper-planes (say, for n = 2, wT =
[
1 1

]
and

b = 2 and for n = 3, wT =
[
1 1 1

]
and b = 3) and draw them on a paper.

b. The distance between a point x0 ∈ Rn and the hyperplane wTx + b = 0 can be
described as the solution of the following optimization problem:

min
x
‖x0 − x‖2

s.t. wTx+ b = 0

However, it turns out that the distance between x0 and wTx + b = 0 has an
analytic solution. Derive the solution. (Hint: you may be familiar with another
way of deriving this distance; try your way too)

c. Assume that we have two hyper-planes, wTx + b1 = 0 and wTx + b2 = 0. What
is the distance between these two hyperplanes?

Solution: Will be released later.

6. [Linear Algebra] One way to define a convex function is as follows. A function f(x) is
convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y and 0 < λ < 1.

a. Prove that f(x) = x2 is a convex function. (Prove by applying the definition.)

b. A n-by-n matrix A is a positive semi-definite matrix if xTAx ≥ 0, for any x ∈ Rn

s.t x 6= 0.

Prove that the function f(x) = xTAx is convex if A is a positive semi-definite
matrix. Note that x is a vector here. (Hint: the solution is somewhat similar to
the solution of part (a.))

Solution:

a. We use the definition of convex function :

f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y)

=(λx+ (1− λ)y)2 − λx2 − (1− λ)y2

=λ2x2 + (1− λ)2y2 + 2λ(1− λ)xy − λx2 − (1− λ)y2

=(λ2 − λ)x2 + ((1− λ)2 − (1− λ))y2 + 2λ(1− λ)xy

=(λ− 1)λ(x2 + y2 − 2xy)

=(λ− 1)λ(x− y)2 ≤ 0

Note that the last inequality comes from the fact 0 < λ < 1.

3



b. As in (a.), using the definition:

f(λx+ (1− λ)y)− λf(x)− (1− λ)f(y)

=(λx+ (1− λ)y)TA(λx+ (1− λ)y)− λxTAx− (1− λ)yTAy

=λ2xTAx+ (1− λ)2yTAy + λ(1− λ)xTAy + λ(1− λ)yTAx− λxTAx− (1− λ)yTAy

=(λ2 − λ)xTAx+ ((1− λ)2 − (1− λ))yTAy + λ(1− λ)xTAy + λ(1− λ)yTAx

=(λ− 1)λ(xTAx+ yTAy − xTAy − yTAx)

=(λ− 1)λ(x− y)TA(x− y) ≤ 0

The last inequality holds because A is positive semi-definite.

7. [CNF and DNF] Consider the following Boolean function written in a conjunctive
normal form

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ . . . (x15 ∨ x16)

If no new variable is introduced, how many clauses do you need to write down the
same function in disjunctive normal form ?

Solution: Each clause in the final disjunctive normal form (DNF) should be of the
form xi1 ∧xi2 ∧ . . .∧xi8 , where i1 can be 1 or 2, i2 can be 3 or 4, and so on. Therefore,
28 clauses are needed to write out the final DNF.
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