Problem Set 0: Solution

1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ.
a. What is the probability of obtaining the first head at the $(k+1)$-th toss?
b. What is the expected number of tosses needed to get the first head?

Solution:

a.

$$
\operatorname{Pr}(k \text { tails in the first } k \text { tosses, then } 1 \text { head })=(1-\lambda)^{k} \lambda
$$

b. Let M be the number of the tosses required to get the first head and let $S=E[M]$. Given that tosses are independent, and expectation is additive:

$$
S=\lambda \times 1+(1-\lambda) \times(S+1)
$$

Solving for S gives $S=\frac{1}{\lambda}$.
2. [Probability] Assume X is a random variable.
a. We define the variance of X as: $\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$. Prove that $\operatorname{Var}(X)=$ $E\left[X^{2}\right]-E[X]^{2}$.
b. If $E[X]=0$ and $E\left[X^{2}\right]=1$, what is the variance of X ? If $Y=a+b X$, what is the variance of Y ?

Solution:

a. Directly from the definition of variance:

$$
\begin{align*}
E\left[(X-E[X])^{2}\right] & =E\left[X^{2}-2 X E[X]+E[X]^{2}\right]=E\left[X^{2}\right]-2 E[X E[X]]+E[X]^{2} \\
& =E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2}=E\left[X^{2}\right]-E[X]^{2} \tag{1}
\end{align*}
$$

where the second equality makes use of the additivity of expectations and the third makes use of the fact that $E[X]$ is a constant.
b. Substituting the values for $E[X]$ and $E\left[X^{2}\right]$ in Eq. 1, we get

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=1
$$

If $Y=a+b X$,

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[(a+b X)^{2}\right]=E\left[a^{2}+2 a b X+b^{2} X^{2}\right] \\
& =a^{2}+2 a b E[X]+b^{2} E\left[X^{2}\right]=a^{2}+b^{2} \\
E[Y] & =E[a+b X]=a+b E[X]=a \\
\operatorname{Var}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=a^{2}+b^{2}-a^{2}=b^{2}
\end{aligned}
$$

3. [Probability] John is a great fortune teller. Assume that we know three facts: 1) If John tells you that a lottery ticket will win, it will win with probability 0.99. 2) If John tells you that a lottery ticket will not win, it will not win with probability 0.99999. 3) With probability 10^{-5}, John predicts that a ticket as a winning ticket. This also means that with probability $1-10^{-5}$, John predicts that a ticket will not win.
a. Given a ticket, what is the probability that it wins?
b. What is the probability that John correctly predicts a winning ticket?

Solution: Let T be the event "John predicts that a given ticket is a winning ticket". Let $\neg T$ be the event "John predicts that a given ticket is not a winning ticket". Similarly, let W be the event that the given ticket wins and $\neg W$ be the event that the given ticket does not win. Then:
a. Given a ticket, the probability that it wins is:

$$
\begin{aligned}
P(W) & =P(W, T)+P(W, \neg T)=P(W \mid T) P(T)+P(W \mid \neg T) P(\neg T) \\
& =0.99 \times 10^{-5}+(1-0.99999) \times\left(1-10^{-5}\right) \\
& \approx 1.99 \times 10^{-5}
\end{aligned}
$$

b. The probability that John correctly predicts a winning ticket is:

$$
\begin{aligned}
P(T \mid W) & =\frac{P(T, W)}{P(W)}=\frac{P(W \mid T) P(T)}{P(W)} \\
& =\frac{0.99 \times 10^{-5}}{0.99 \times 10^{-5}+(1-0.99999) \times\left(1-10^{-5}\right)} \\
& \approx 0.497
\end{aligned}
$$

4. [Calculus] Let $f(x, y)=3 x^{2}+y^{2}-x y-11 x$
a. Find $\frac{\partial f}{\partial x}$, the partial derivative of f with respect to x. Find $\frac{\partial f}{\partial y}$.
b. Find $(x, y) \in \mathbb{R}^{2}$ that minimizes f.

Solution: This question serves as a review of multivariate calculus.
a. $\frac{\partial f}{\partial x}=6 x-y-11 \quad \frac{\partial f}{\partial y}=2 y-x$
b. Recall from basic calculus that a function attains its maxima and minima at points where the derivative is zero. Setting the derivative from (a.) to zero, we see that f is maximized or minimized at $(x, y)=(2,1)$.
One approach to show that this point is a minimizer is to consider the matrix of second derivatives, the Hessian, and show that it is positive definite. In our case, the Hessian is

$$
H_{f}=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 & -1 \\
-1 & 2
\end{array}\right]
$$

This matrix is positive definite for all (x, y) because the principal minors are positive. (This is just one way of showing that a matrix is positive definite. What are the other ways?)
5. [Linear Alegbra] Assume that $w \in \mathbb{R}^{n}$ and b is a scalar. A hyper-plane in \mathbb{R}^{n} is the set, $\left\{x: x \in \mathbb{R}^{n}, w^{T} x+b=0\right\}$.
a. For $n=2$ and 3 , find two example hyper-planes (say, for $n=2, w^{T}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $b=2$ and for $n=3, w^{T}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left.b=3\right)$ and draw them on a paper.
b. The distance between a point $x_{0} \in \mathbb{R}^{n}$ and the hyperplane $w^{T} x+b=0$ can be described as the solution of the following optimization problem:

$$
\begin{aligned}
& \min _{x}\left\|x_{0}-x\right\|^{2} \\
& \text { s.t. } w^{T} x+b=0
\end{aligned}
$$

However, it turns out that the distance between x_{0} and $w^{T} x+b=0$ has an analytic solution. Derive the solution. (Hint: you may be familiar with another way of deriving this distance; try your way too)
c. Assume that we have two hyper-planes, $w^{T} x+b_{1}=0$ and $w^{T} x+b_{2}=0$. What is the distance between these two hyperplanes?

Solution: Will be released later.
6. [Linear Algebra] One way to define a convex function is as follows. A function $f(x)$ is convex if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for all x, y and $0<\lambda<1$.
a. Prove that $f(x)=x^{2}$ is a convex function. (Prove by applying the definition.)
b. A n-by- n matrix A is a positive semi-definite matrix if $x^{T} A x \geq 0$, for any $x \in \mathbb{R}^{n}$ s.t $x \neq 0$.

Prove that the function $f(x)=x^{T} A x$ is convex if A is a positive semi-definite matrix. Note that x is a vector here. (Hint: the solution is somewhat similar to the solution of part (a.))

Solution:

a. We use the definition of convex function :

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) y)-\lambda f(x)-(1-\lambda) f(y) \\
= & (\lambda x+(1-\lambda) y)^{2}-\lambda x^{2}-(1-\lambda) y^{2} \\
= & \lambda^{2} x^{2}+(1-\lambda)^{2} y^{2}+2 \lambda(1-\lambda) x y-\lambda x^{2}-(1-\lambda) y^{2} \\
= & \left(\lambda^{2}-\lambda\right) x^{2}+\left((1-\lambda)^{2}-(1-\lambda)\right) y^{2}+2 \lambda(1-\lambda) x y \\
= & (\lambda-1) \lambda\left(x^{2}+y^{2}-2 x y\right) \\
= & (\lambda-1) \lambda(x-y)^{2} \leq 0
\end{aligned}
$$

Note that the last inequality comes from the fact $0<\lambda<1$.
b. As in (a.), using the definition:

$$
\begin{aligned}
& f(\lambda x+(1-\lambda) y)-\lambda f(x)-(1-\lambda) f(y) \\
= & (\lambda x+(1-\lambda) y)^{T} A(\lambda x+(1-\lambda) y)-\lambda x^{T} A x-(1-\lambda) y^{T} A y \\
= & \lambda^{2} x^{T} A x+(1-\lambda)^{2} y^{T} A y+\lambda(1-\lambda) x^{T} A y+\lambda(1-\lambda) y^{T} A x-\lambda x^{T} A x-(1-\lambda) y^{T} A y \\
= & \left(\lambda^{2}-\lambda\right) x^{T} A x+\left((1-\lambda)^{2}-(1-\lambda)\right) y^{T} A y+\lambda(1-\lambda) x^{T} A y+\lambda(1-\lambda) y^{T} A x \\
= & (\lambda-1) \lambda\left(x^{T} A x+y^{T} A y-x^{T} A y-y^{T} A x\right) \\
= & (\lambda-1) \lambda(x-y)^{T} A(x-y) \leq 0
\end{aligned}
$$

The last inequality holds because A is positive semi-definite.
7. [CNF and DNF] Consider the following Boolean function written in a conjunctive normal form

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge \ldots\left(x_{15} \vee x_{16}\right)
$$

If no new variable is introduced, how many clauses do you need to write down the same function in disjunctive normal form ?
Solution: Each clause in the final disjunctive normal form (DNF) should be of the form $x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{8}}$, where i_{1} can be 1 or 2 , i_{2} can be 3 or 4 , and so on. Therefore, 2^{8} clauses are needed to write out the final DNF.

