Pinhole Camera Model

Computational Photography
Derek Hoiem, University of Illinois
How tall is this woman?

How high is the camera?

What is the camera rotation?

What is the focal length of the camera?

Which ball is closer?
Today’s lecture

Mapping between image and world coordinates

– Pinhole camera model
– Projective geometry
 • Vanishing points and lines
– Projection matrix
Let’s design a camera

– Idea 1: put a piece of film in front of an object
– What will the image look like?
Idea 2: add a barrier to block off most of the rays
– Few rays from a point reach the film (small blur)
– The opening is called the aperture
Pinhole camera

\[f = \text{focal length} \]
\[c = \text{center of the camera} \]

Figure from Forsyth
Camera obscura: the pre-camera

• First idea: Mozi, China (470BC to 390BC)

• First built: Alhacen, Iraq/Egypt (965 to 1039AD)
Camera Obscurea used for Tracing

Lens Based Camera Obscurea, 1568
First Photograph

Oldest surviving photograph
– Took 8 hours on pewter plate

Photograph of the first photograph

Joseph Niepce, 1826

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes
Dimensionality Reduction Machine (3D to 2D)

3D world → 2D image

Point of observation

Figures © Stephen E. Palmer, 2002
Projection can be tricky...
Projective Geometry

What is lost?
• Length
Length is not preserved

Figure by David Forsyth
Projective Geometry

What is lost?

• Length
• Angles
Projective Geometry

What is preserved?

• Straight lines are still straight
Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”
Vanishing points and lines

- The projections of parallel 3D lines intersect at a **vanishing point**
- The projection of parallel 3D planes intersect at a **vanishing line**
- If a set of parallel 3D lines are also parallel to a particular plane, their vanishing point will lie on the vanishing line of the plane
- Not all lines that intersect are parallel
- Vanishing point <-> 3D direction of a line
- Vanishing line <-> 3D orientation of a surface
Vanishing points and lines

Vanishing point

Vertical vanishing point (at infinity)

Vanishing line

Vanishing point

Vanishing point

Credit: Criminisi
Vanishing points and lines

Photo from Garry Knight
Vanishing objects
Projection: world coordinates \rightarrow image coordinates

\[P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \]
Homogeneous coordinates

Conversion

Converting to *homogeneous* coordinates

\[
(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

homogeneous image coordinates

\[
(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

homogeneous scene coordinates

Converting *from* homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]

\[
\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)
\]
Homogeneous coordinates

Invariant to scaling

\[
\begin{bmatrix}
 x \\
 y \\
 w \\
\end{bmatrix}
\quad \Rightarrow \quad
\begin{bmatrix}
 kx \\
 ky \\
 kw \\
\end{bmatrix}
\]

Homogeneous Coordinates \quad Cartesian Coordinates

Point in Cartesian is ray in Homogeneous
Basic geometry in homogeneous coordinates

• Line equation: \(ax + by + c = 0 \)

\[
\begin{bmatrix}
 a_i \\
 b_i \\
 c_i
\end{bmatrix}
\]

• Append 1 to pixel coordinate to get homogeneous coordinate

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix}
\]

• Line given by cross product of two points

\[
line_{ij} = p_i \times p_j
\]

• Intersection of two lines given by cross product of the lines

\[
q_{ij} = line_i \times line_j
\]
Another problem solved by homogeneous coordinates

Intersection of parallel lines

Cartesian: (Inf, Inf)
Homogeneous: (1, 1, 0)

Cartesian: (Inf, Inf)
Homogeneous: (1, 2, 0)
Pinhole Camera Model

\[\mathbf{x} = \mathbf{K} [\mathbf{R} \quad \mathbf{t}] \mathbf{X} \]

- \(\mathbf{x} \): Image Coordinates: (u,v,1)
- \(\mathbf{K} \): Intrinsic Matrix (3x3)
- \(\mathbf{R} \): Rotation (3x3)
- \(\mathbf{t} \): Translation (3x1)
- \(\mathbf{X} \): World Coordinates: (X,Y,Z,1)
Interlude: when have I used this stuff?
When have I used this stuff?

Object Recognition (CVPR 2006)
When have I used this stuff?

Single-view reconstruction (SIGGRAPH 2005)
When have I used this stuff?

Getting spatial layout in indoor scenes (ICCV 2009)
When have I used this stuff?

Inserting synthetic objects into images: http://vimeo.com/28962540
When have I used this stuff?

Creating detailed and complete 3D scene models from a single view
When have I used this stuff?

Multiview 3D reconstruction at Reconstruct
Projection matrix

Intrinsic Assumptions
- Unit aspect ratio
- Principal point at (0,0)
- No skew

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)

\[x = K \begin{bmatrix} I & 0 \end{bmatrix} X \]
Remove assumption about principal point

Intrinsic Assumptions
- Unit aspect ratio
- No skew

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)

\[x = K[I \ 0] X \]

\[\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]

This is a very commonly used model
Remove assumption that pixels are square

Intrinsic Assumptions
- No skew

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)

\[x = K \begin{bmatrix} 1 & 0 \end{bmatrix} X \rightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \]
Remove assumption that pixels are not skewed

Intrinsic Assumptions
- No rotation
- Camera at (0,0,0)

Extrinsic Assumptions

\[
x = K \begin{bmatrix} I & 0 \end{bmatrix} X
\]

\[
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} = \begin{bmatrix}
\alpha & s & u_0 & 0 \\
0 & \beta & v_0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

Note: different books use different notation for parameters
Oriented and Translated Camera
Intrinsic Assumptions

Extrinsic Assumptions

- No rotation

\[x = K[I \ t]X \]

\[
\begin{bmatrix}
u \\
v \\
1
\end{bmatrix} =
\begin{bmatrix}
\alpha & s & u_0 \\
0 & \beta & v_0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

\[
R_x(\alpha) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{bmatrix}
\]

\[
R_y(\beta) = \begin{bmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{bmatrix}
\]

\[
R_z(\gamma) = \begin{bmatrix}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Allow camera rotation

\[x = K[R \quad t]X \]

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix}
= \begin{bmatrix}
 \alpha & s & u_0 \\
 0 & \beta & v_0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} & r_{13} & t_x \\
 r_{21} & r_{22} & r_{23} & t_y \\
 r_{31} & r_{32} & r_{33} & t_z \\
 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Degrees of freedom

\[x = K[R \ t] X \]

Columns (and rows) of R are orthonormal:

1. \(r_i^T r_i = 1 \)
2. \(r_i^T r_j = 0 \)

Inverse of R is its transpose:

\[R^T R = I \]
Vanishing Point = Projection from Infinity

\[p = K[R \ t] \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} \Rightarrow p = KR \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow p = K \begin{bmatrix} x_R \\ y_R \\ z_R \end{bmatrix} \]

\[
\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_R \\ y_R \\ z_R \end{bmatrix} \Rightarrow \\
\begin{align*}
u &= \frac{fx_R}{z_R} + u_0 \\
v &= \frac{fy_R}{z_R} + v_0
\end{align*}
\]
Scaled Orthographic Projection

- Rays are parallel
- Approximated in perspective when object dimensions are small compared to distance to camera

\[
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix} = \begin{bmatrix}
 s & 0 & 0 & -c_x/s \\
 0 & s & 0 & -c_y/s \\
 0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

s pixel scale (e.g. pix/meter)

(c_x, c_y) maps to $(0,0)$
Take-home question

Suppose we have two 3D cubes on the ground facing the viewer, one near, one far.

1. What would they look like in perspective?
2. What would they look like in scaled orthographic view?
Take-home questions

• Suppose the camera axis is in the direction of \((x=0, y=0, z=1)\) in its own coordinate system. What is the camera axis in world coordinates given the extrinsic parameters \(R, t\)?

• Suppose a camera at height \(y=h\) \((x=0,z=0)\) observes a point at \((u,v)\) known to be on the ground \((y=0)\). Assume \(R\) is identity. What is the 3D position of the point in terms of \(f, u_0, v_0\)?
Beyond Pinholes: Radial Distortion

Image from Martin Habbecke
Things to remember

- Vanishing points and vanishing lines
- Pinhole camera model and camera projection matrix

\[x = K[R \quad t]X \]
Next lectures

• Single-view metrology and more camera model
 – Measuring 3D distances from the image
 – Effects of lens, aperture, focal length, sensor size

• Single-view 3D reconstruction