Image-based Lighting (Part 2)

Computational Photography
Derek Hoiem, University of Illinois

Today

Brief review of last class

 Show how to get an HDR image from several LDR images, and how to display HDR

 Show how to insert fake objects into real scenes using environment maps

How to render an object inserted into an image?

Image-based lighting

- Capture incoming light with a "light probe"
- Model local scene
- Ray trace, but replace distant scene with info from light probe

(a) Acquiring the background photograph

(b) Using the light probe

(c) Constructing the light-based model

(d) Computing the global illumination solution

Debevec SIGGRAPH 1998

Key ideas for Image-based Lighting

• Environment maps: tell what light is entering at each angle within some shell

Spherical Map Example

Key ideas for Image-based Lighting

• Light probes: a way of capturing environment maps in real scenes

One picture of a mirrored ball received light coming into the ball from nearly all angles (including behind)

Assume camera is roughly same height as light probe and is sufficiently distant, so all viewing rays that hit light probe are roughly in direction of z-axis

Solving for normal vector

Solving for reflection vector

$$(u, v) \rightarrow (Nx, Ny, Nz)$$

Mirror ball -> equirectangular

Mirror ball

Normals

Reflection vectors

Phi/theta of reflection vecs

Equirectangular

Phi/theta equirectangular domain

One small snag

- How do we deal with light sources? Sun, lights, etc?
 - They are much, much brighter than the rest of the environment

Use High Dynamic Range photography!

Key ideas for Image-based Lighting

 Capturing HDR images: needed so that light probes capture full range of radiance

LDR->HDR by merging exposures

High dynamic range

Ways to vary exposure

Shutter Speed

F/stop (aperture, iris)

Neutral Density (ND) Filters

Recovering High Dynamic Range Radiance Maps from Photographs

Paul E. Debevec

Jitendra Malik

University of California at Berkeley¹

SIGGRAPH 1997

The Approach

- Get pixel values Z_{ij} for image with shutter time Δt_j (i^{th} pixel location, j^{th} image)
- Exposure is irradiance integrated over time:

$$E_{ij} = R_i \cdot \Delta t_j$$

• Pixel values are non-linearly mapped E_{ij} 's:

$$Z_{ij} = f(E_{ij}) = f(R_i \cdot \Delta t_j)$$

Rewrite to form a (not so obvious) linear system:

$$\ln f^{-1}(Z_{ij}) = \ln(R_i) + \ln(\Delta t_j)$$
$$g(Z_{ij}) = \ln(R_i) + \ln(\Delta t_j)$$

The objective

Solve for radiance R and mapping g for each of 256 pixel values to minimize:

Matlab Code

```
% gsolve.m - Solve for imaging system response function
% Given a set of pixel values observed for several pixels in several
% images with different exposure times, this function returns the
% imaging system's response function g as well as the log film irradiance
% values for the observed pixels.
% Appumen:
% Zmin = 0
% Zmax - 255
% Arguments:
\ Z(i,j) is the pixel values of pixel location number i in image j \ B(j) is the log delta t, or log shutter speed, for image j \ 1 is lambba, the constant that determines the amount of smoothness
% w(z) is the weighting function value for pixel value z
% Returns:
% g(z) is the log exposure corresponding to pixel value z
% IE(i) is the log film irradiance at pixel location i
function [g, 1E] -gsolve(Z, B, 1, w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
%% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);

A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij;
                                                       b(k,1) = wij * B(i,j);
    k=k+1;
  end
end
%% Fix the curve by setting its middle value to 0
A(k, 129) = 1;
k=k+1;
%% Include the smoothness equations
for i=1:n-2
  A(k,i)=l*w(i+1);
                             A(k,i+1)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
  k=k+1;
%% Solve the system using SVD
x - A b
g = x(1:n);
1E = x(n+1:size(x,1));
```

Matlab Code

```
function [q, lE] = qsolve(Z, B, l, w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A, 1), 1);
        %% Include the data-fitting equations
k = 1;
for i=1:size(Z,1)
 for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
   A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(j);
   k=k+1;
  end
end
for i=1:n-2 %% Include the smoothness equations
 A(k,i)=1*w(i+1); A(k,i+1)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
 k=k+1;
end
A(k, 129) = 1;
              %% Fix the curve by setting its middle value to 0
k=k+1;
x = A \setminus b;
                    %% Solve the system using pseudoinverse
q = x(1:n);
1E = x(n+1:size(x,1));
```

Illustration

Image series

Pixel Value Z = f(Exposure) $Exposure = Radiance * \Delta t$ $\log Exposure = \log Radiance + \log \Delta t$

Results: Digital Camera

Kodak DCS460 1/30 to 30 sec

Recovered response curve

log Exposure

Reconstructed radiance map

Results: Color Film

• Kodak Gold ASA 100, PhotoCD

Recovered Response Curves

How to display HDR?

Global Operator (Reinhart et al)

$$L_{display} = \frac{L_{world}}{1 + L_{world}}$$

Global Operator Results

Reinhart Operator

Darkest 0.1% scaled linearly

Local operator

http://people.csail.mit.edu/fredo/PUBLI/Siggraph2002/DurandBilateral.pdf

Acquiring the Light Probe

Assembling the Light Probe

Lighting Environments from the Light Probe Image Gallery: http://www.debevec.org/Probes/

Illumination Results

Rendered with Greg Larson's RADIANCE synthetic imaging system

Comparison: Radiance map versus single image

CG Objects Illuminated by a Traditional CG
Light Source

Illuminating Objects using Measurements of Real Light

Environment assigned "glow" material property in Greg Ward's RADIANCE system.

http://radsite.lbl.gov/radiance/

Paul Debevec. A Tutorial on Image-Based Lighting. IEEE Computer Graphics and Applications, Jan/Feb 2002.

Rendering with Natural Light

SIGGRAPH 98 Electronic Theater

Movie

http://www.youtube.com/watch?v=EHBgkeXH9IU

(stretch break during movie)

We can now illuminate synthetic objects with real light.

- Environment map
- Light probe
- HDR
- Ray tracing

How do we add synthetic objects to a real scene?

Real Scene Example

Goal: place synthetic objects on table

Modeling the Scene

Light Probe / Calibration Grid

Modeling the Scene

Rendering into the Scene

Background Image

Differential Rendering

Local scene w/o objects, illuminated by model

Rendering into the Scene

Objects and Local Scene matched to Scene

Differential Rendering Difference in local scene

IMAGE-BASED LIGHTING IN FIAT LUX

Paul Debevec, Tim Hawkins, Westley Sarokin, H. P. Duiker, Christine Cheng, Tal Garfinkel, Jenny Huang SIGGRAPH 99 Electronic Theater

Fiat Lux

- http://ict.debevec.org/~debevec/FiatLux/movie/
- http://ict.debevec.org/~debevec/FiatLux/technology/

HDR Image Series

Assembled Panorama

Light Probe Images

Capturing a Spatially-Varying Lighting Environment

What if we don't have a light probe?

http://www1.cs.columbia.edu/CAVE/projects/world_eye/ -- Nishino Nayar 2004

Environment Map from an Eye

Can Tell What You are Looking At

Eye Image:

Computed Retinal Image:

Video

Summary

 Real scenes have complex geometries and materials that are difficult to model

- We can get an HDR image by combining bracketed shots
- We can relight objects at that position using the environment map

