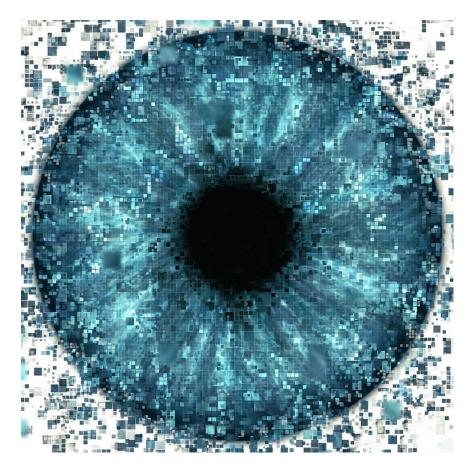
Pixels and Image Filtering



Computational Photography
Derek Hoiem

Today's Class: Pixels and Linear Filters

What is a pixel? How is an image represented?

What is image filtering and how do we do it?

Introduce Project 1: Hybrid Images

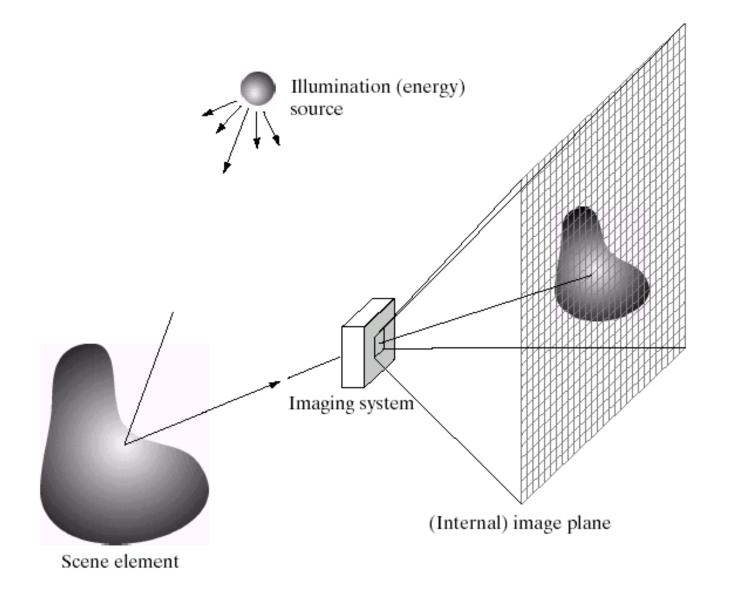
Next three classes

- Image filters in spatial domain
 - Smoothing, sharpening, measuring texture

- Image filters in the frequency domain
 - Denoising, sampling, image compression

- Templates and Image Pyramids
 - Detection, coarse-to-fine registration

Image Formation

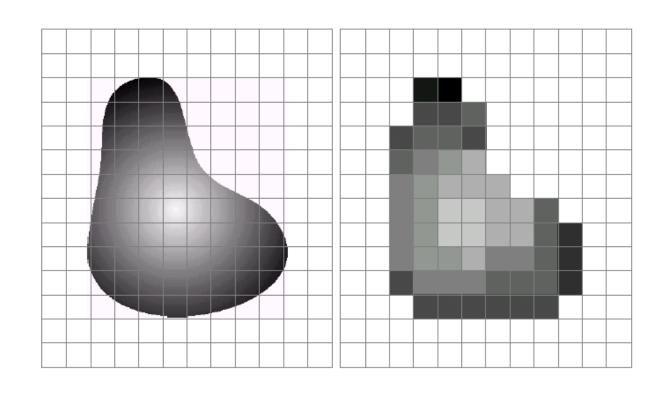


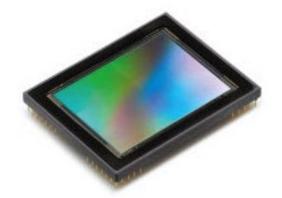
Digital camera

Digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array





CCD sensor

The raster image (pixel matrix)

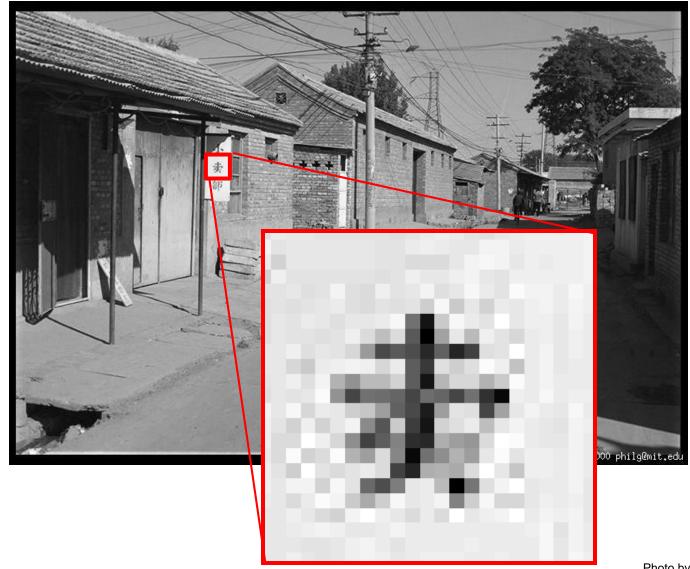
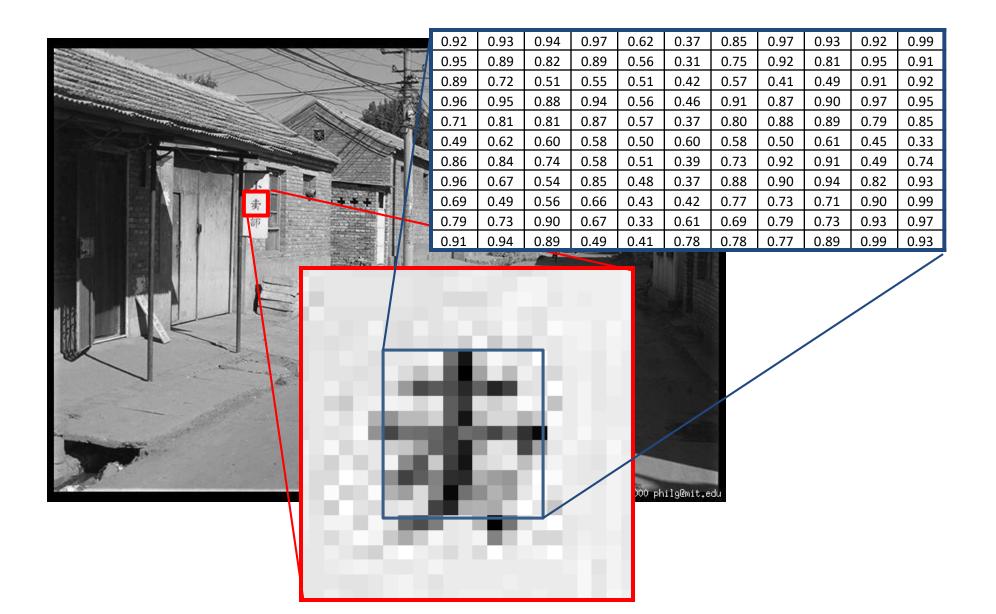
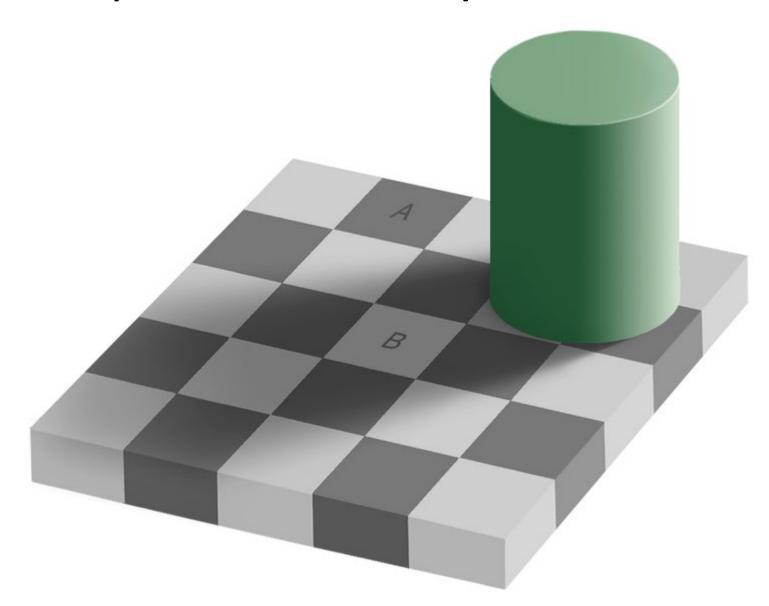


Photo by Phil Greenspun used with permission

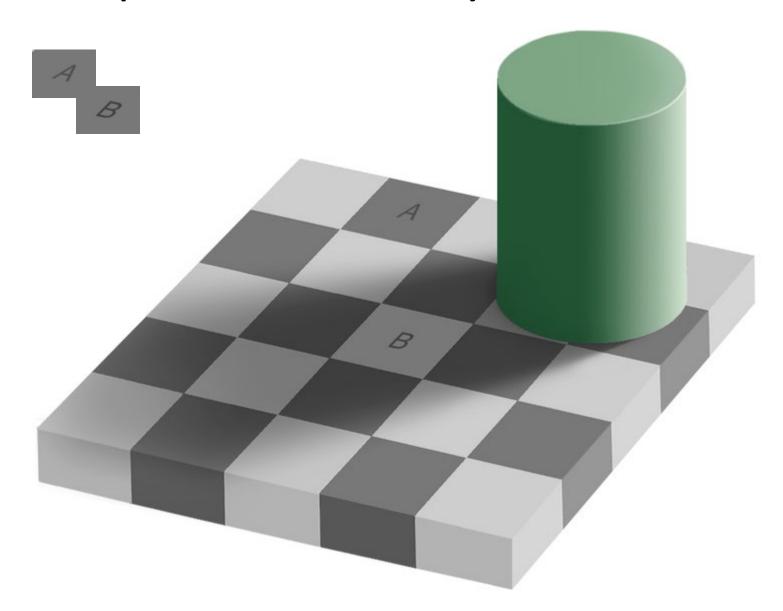
The raster image (pixel matrix)



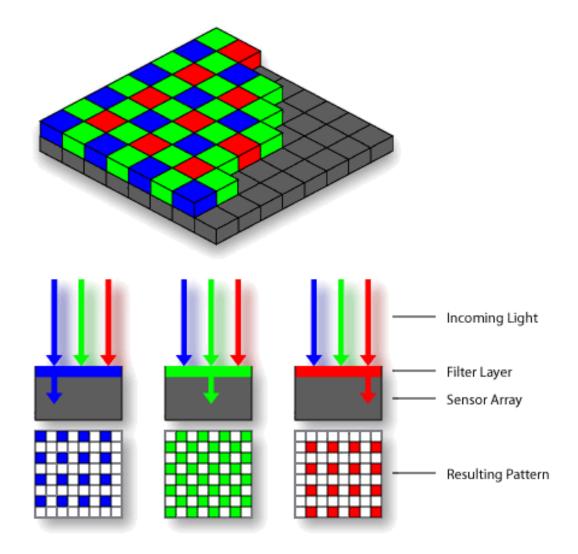
Perception of Intensity



Perception of Intensity



Digital Color Images



Color Image

R

Images in Python

```
im = cv2.imread(filename)  # read image
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) # order channels as RGB
im = im / 255  # values range from 0 to 1
```

- RGB image im is a H x W x 3 matrix (numpy.ndarray)
- im[0,0,0] = top-left pixel value in R-channel
- im[y, x, c] = y+1 pixels down, x+1 pixels to right in the cth channel
- im[H-1, W-1, 2] = bottom-right pixel in B-channel

row	colu	ımn										R				
1044	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	",				
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	_I G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91			В
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92	<u> </u>	_	В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	0.79	0.85	
V	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93		+	0.45	0.33	
			0.03	0.13	0.50	0.00	0.13	0.12	0.77	0.70	0.71	0.90	0.99	0.49	0.74	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

 Image filtering: compute function of local neighborhood at each position

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Example: box filter

	ξ	$\mathbf{g}[\cdot,\cdot$]
1	1	1	1
<u> </u>	1	1	1
9	1	1	1

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

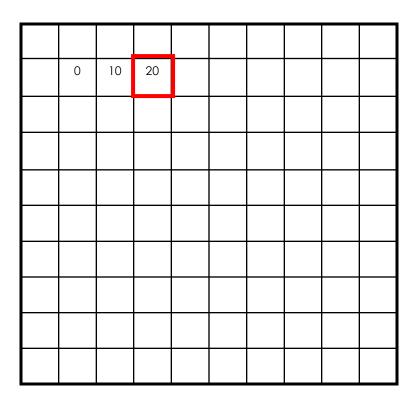
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

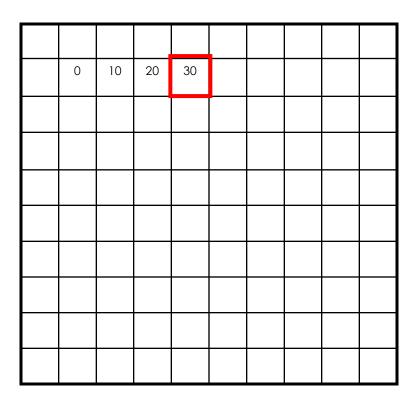
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

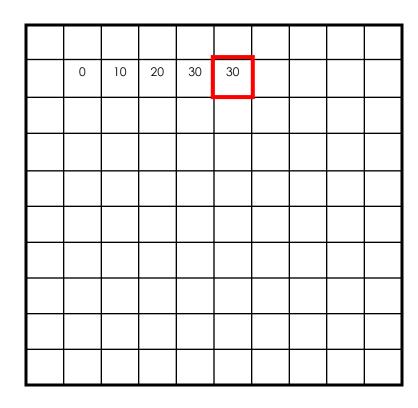
								_	
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}^{\frac{1}{1}}_{\frac{1}{1}}^{\frac{1}{1}}_{\frac{1}{1}}$$

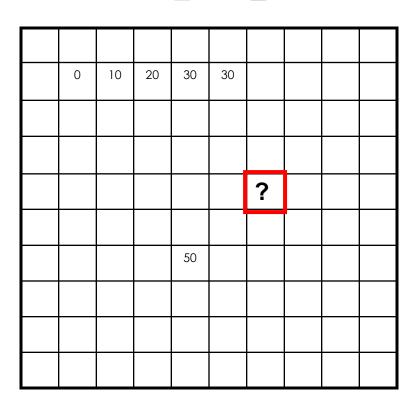
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			?			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



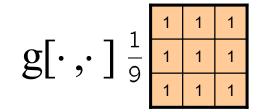
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

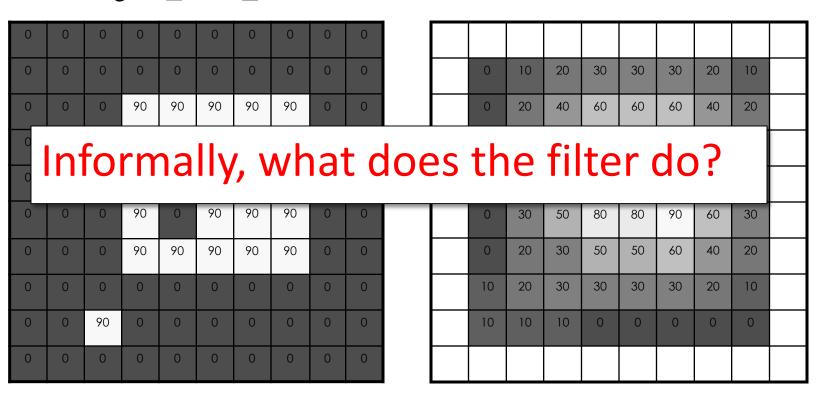
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$



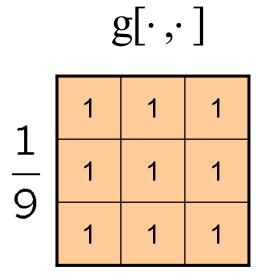


$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

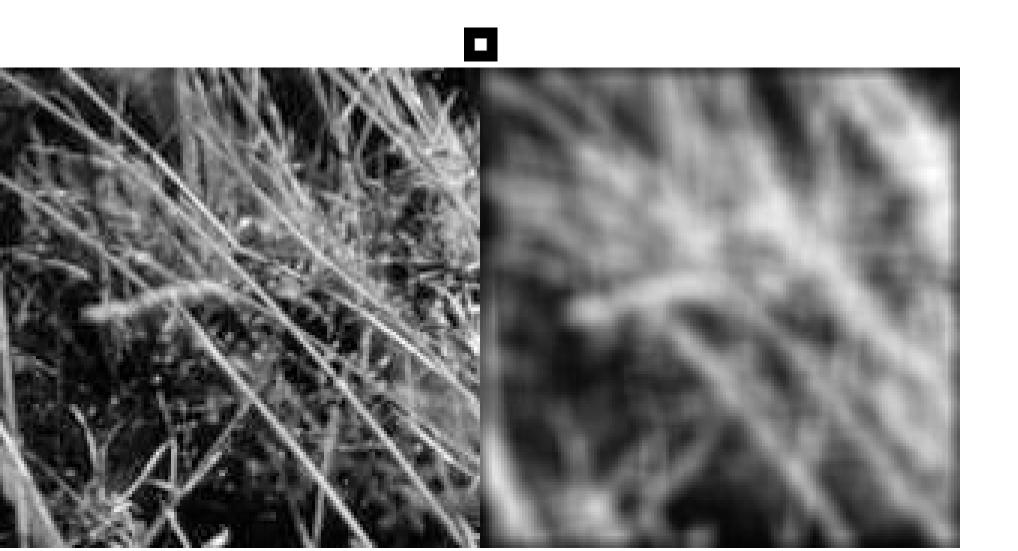
Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



Smoothing with box filter



One more by hand...

0	1	1	0
1	2	2	0
0	0	0	1
0	1	1	2

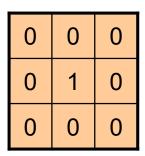
1	0	0
0	1	0
0	0	1

0	1	1	0
1	2	2	0
0	0	0	1
0	1	1	2

0	0	0
0	1	0
0	0	0

Original

Original

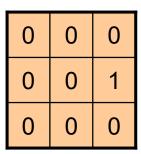


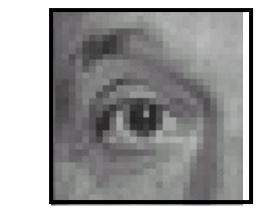
Filtered (no change)

0	0	0
0	0	1
0	0	0

Original

Original





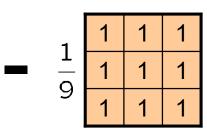
Shifted left By 1 pixel

Original

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

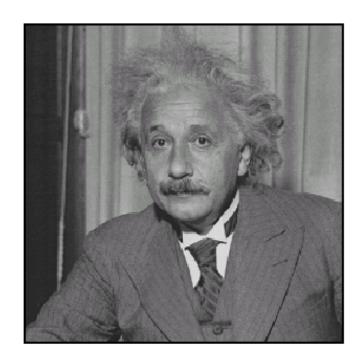


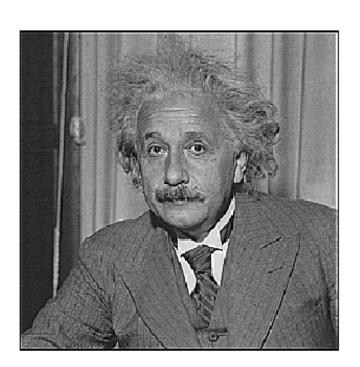
Original

Sharpening filter

- Accentuates differences with local average

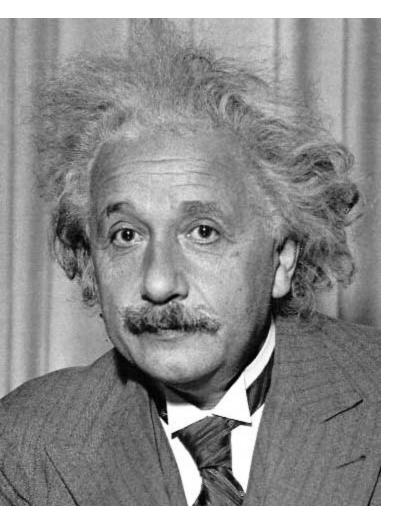
Sharpening





before after

Other filters

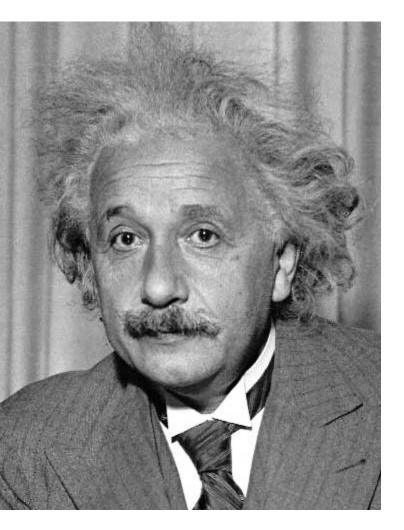


1	0	-1
2	0	-2
1	0	-1

Sobel

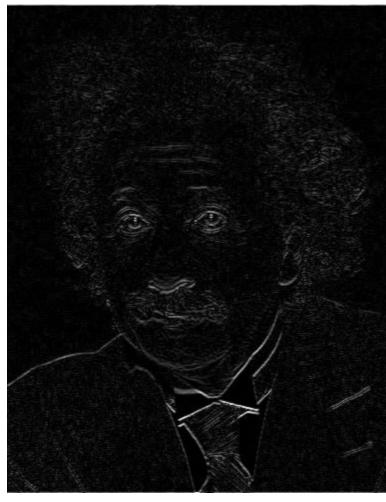
Vertical Edge (absolute value)

Other filters



1	2	1
0	0	0
-1	-2	-1

Sobel



Horizontal Edge (absolute value)

How could we synthesize motion blur?

```
theta = 30
len = 21
mid = (len-1)/2

fil = np.zeros((len,len))
fil[:,int(mid)] = 1/len
R = cv2.getRotationMatrix2D((mid,mid),theta,1)
fil = cv2.warpAffine(fil,R,(len,len))

im_fil = cv2.filter2D(im, -1, fil)
```

Correlation vs. Convolution

2d correlation

$$im_fil = cv2.filter2d(im, -1, fil)$$

$$im_fil[m,n] = \sum_{k,l} fil[k,l] im[m+k,n+l]$$

2d convolution

im_fil = scipy.signal.convolve2d(im, fil, [opts])
$$im_fil[m,n] = \sum_{k,l} fil[k,l] im[m-k,n-l]$$

• "convolve" mirrors the kernel, while "filter" doesn't

```
cv2.filter2D(im, -1, cv2.flip(fil,-1)) same as
signal.convolve2d(im, fil, mode='same', boundary='symm')
```

Key properties of linear filters

Linearity:

```
filter(f_1 + f_2) = filter(f_1) + filter(f_2)
```

Shift invariance: same behavior regardless of pixel location

```
filter(shift(f)) = shift(filter(f))
```

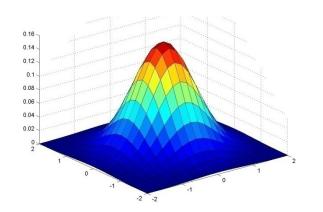
Any linear, shift-invariant operator can be represented as a convolution

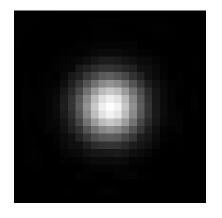
More properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal (image)
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0],
 a * e = a

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness



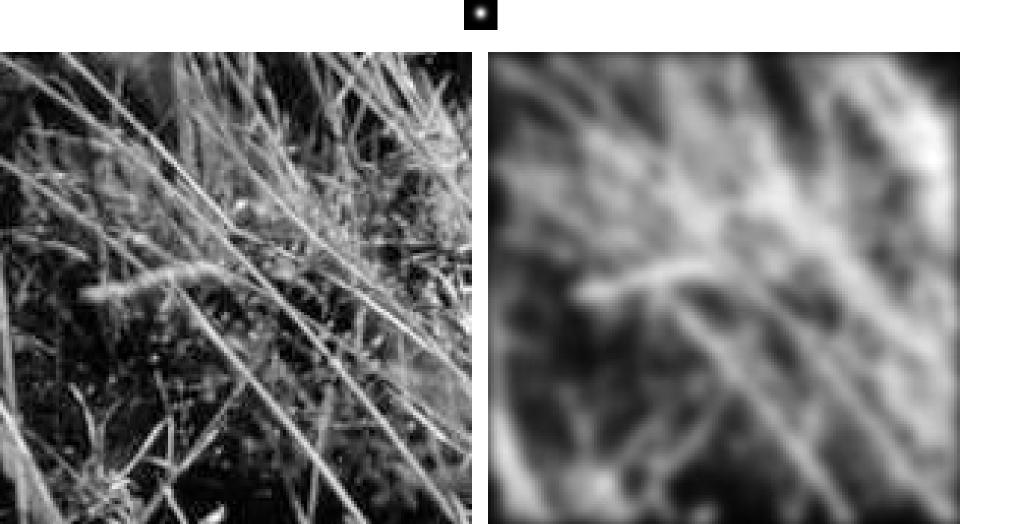


0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003
	0.013 0.022 0.013	0.013 0.059 0.022 0.097 0.013 0.059	0.0130.0590.0970.0220.0970.1590.0130.0590.097	0.003 0.013 0.022 0.013 0.013 0.059 0.097 0.059 0.022 0.097 0.159 0.097 0.013 0.059 0.097 0.059 0.003 0.013 0.022 0.013

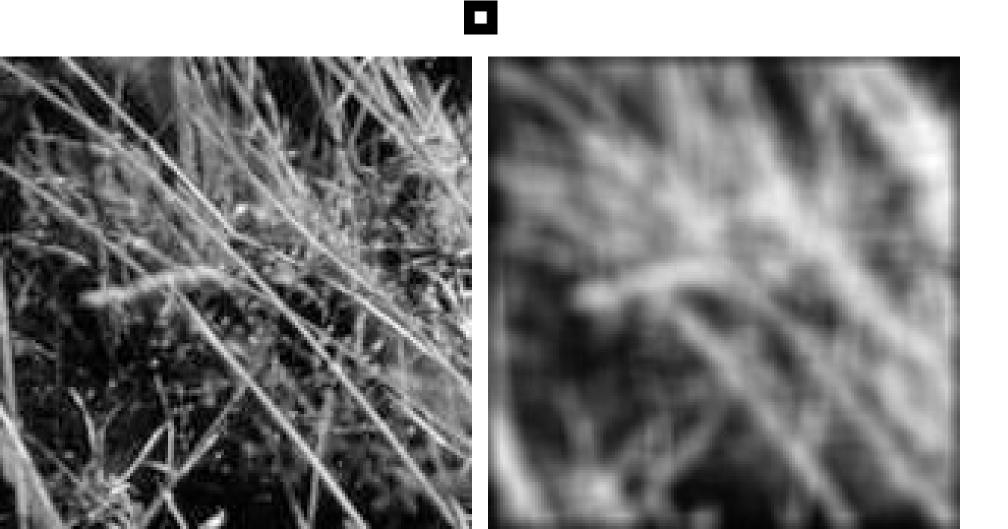
$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

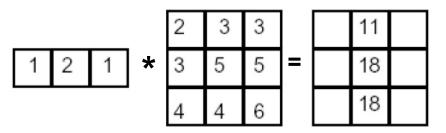
2D filtering (center location only)

1	2	1		2	3	3
2	4	2	*	3	5	5
1	2	1		4	4	6

The filter factors into a product of 1D filters:

1	2	1		1	Х
2	4	2	=	2	
1	2	1		1	

Perform filtering along rows:



Followed by filtering along the remaining column:

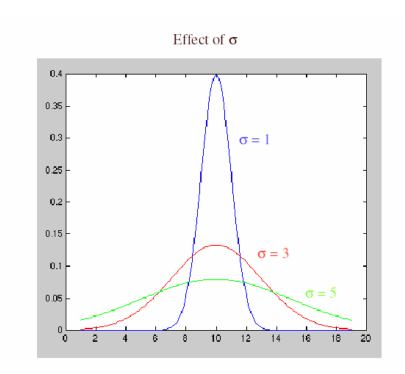
Separability

• Why is separability useful in practice?

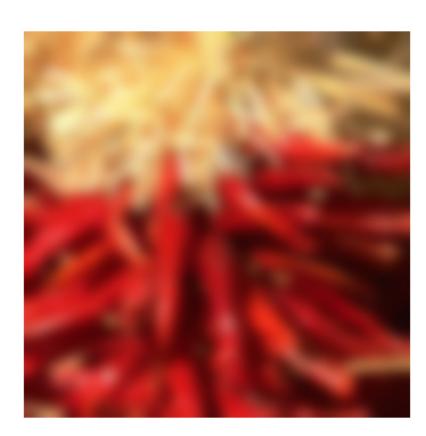
Some practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set kernel half-width to $>= 3 \sigma$

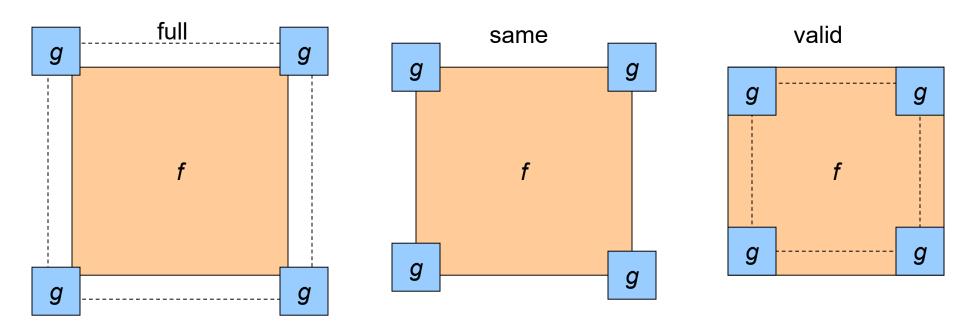


- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge



- methods (Python):
 - clip filter (black): convolve2d(f, g, boundary='fill',0)
 - wrap around: convolve2d(f, g, boundary='wrap')
 - reflect across edge: convolve2d(f, g, boundary='symm')

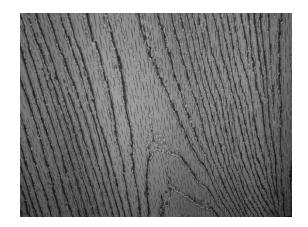
- What is the size of the output?
- Python: convolve2d(g, f, mode)
 - mode = 'full': output size is sum of sizes of f and g
 - mode = 'same': output size is same as f
 - mode = 'valid': output size is difference of sizes of f and g

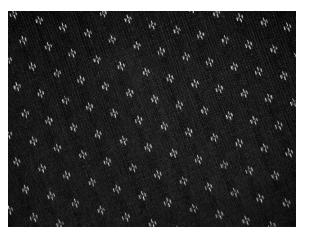


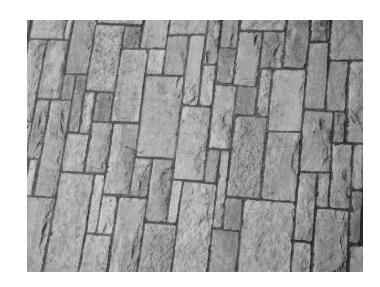
Application: Representing Texture

Source: Forsyth

Texture and Material

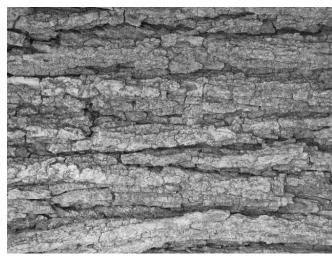






http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation



http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

What is texture?

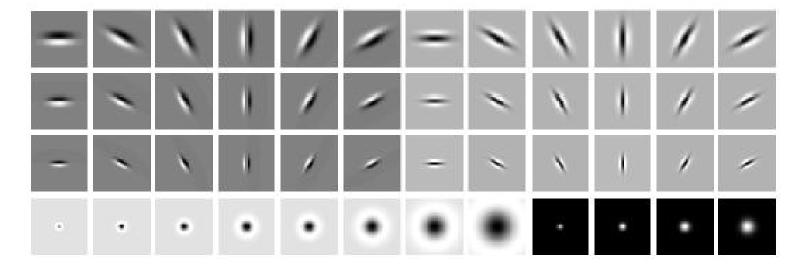
Regular or stochastic patterns caused by bumps, grooves, and/or markings

How can we represent texture?

 Compute responses of blobs and edges at various orientations and scales

Overcomplete representation: filter banks

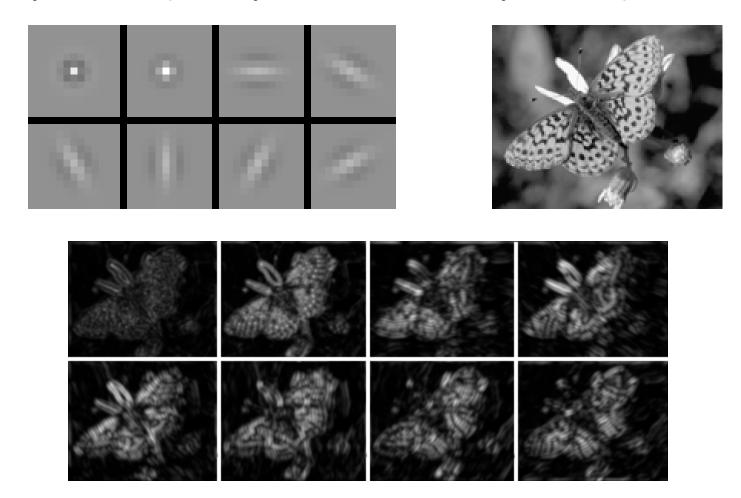
LM Filter Bank



Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

 Process image with each filter and keep responses (or squared/abs responses)

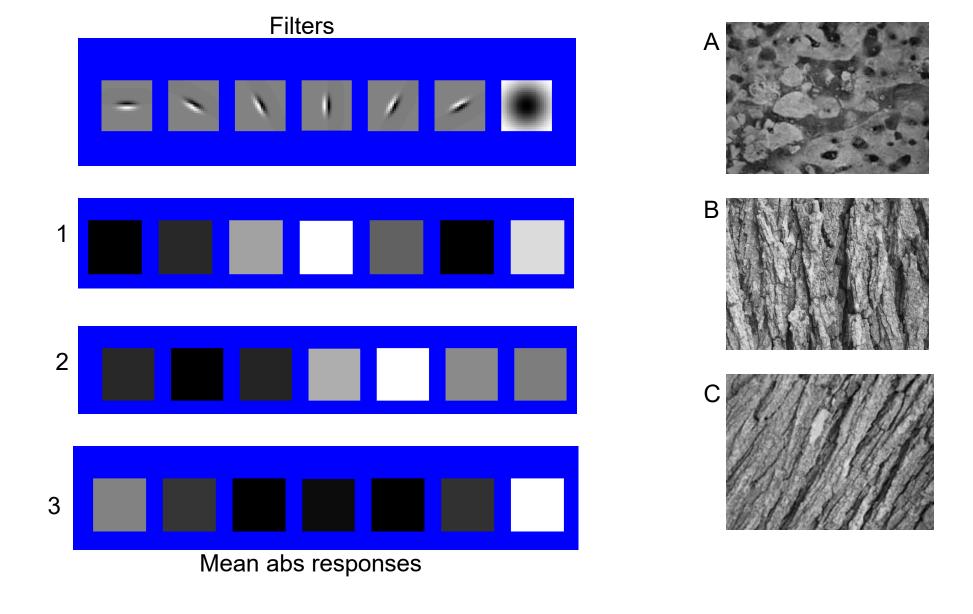


How can we represent texture?

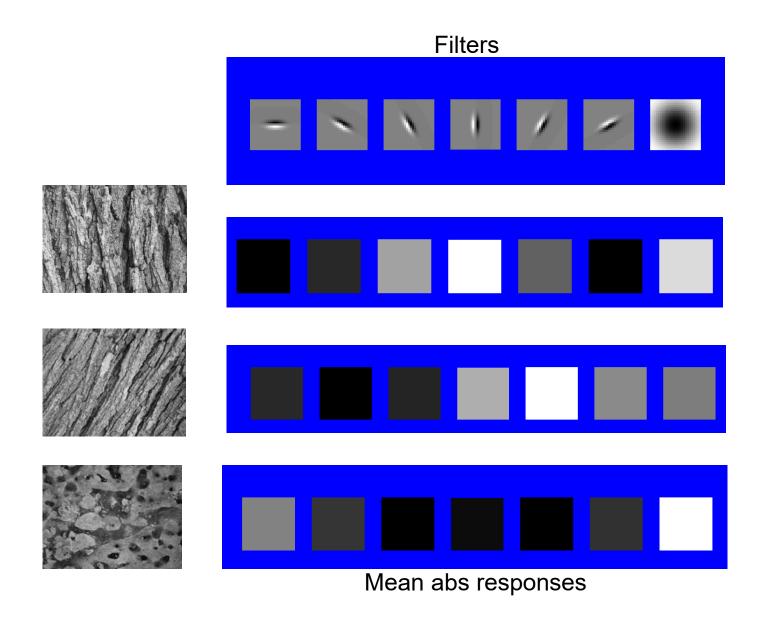
 Measure responses of blobs and edges at various orientations and scales

 Record simple statistics (e.g., mean, std.) of absolute filter responses

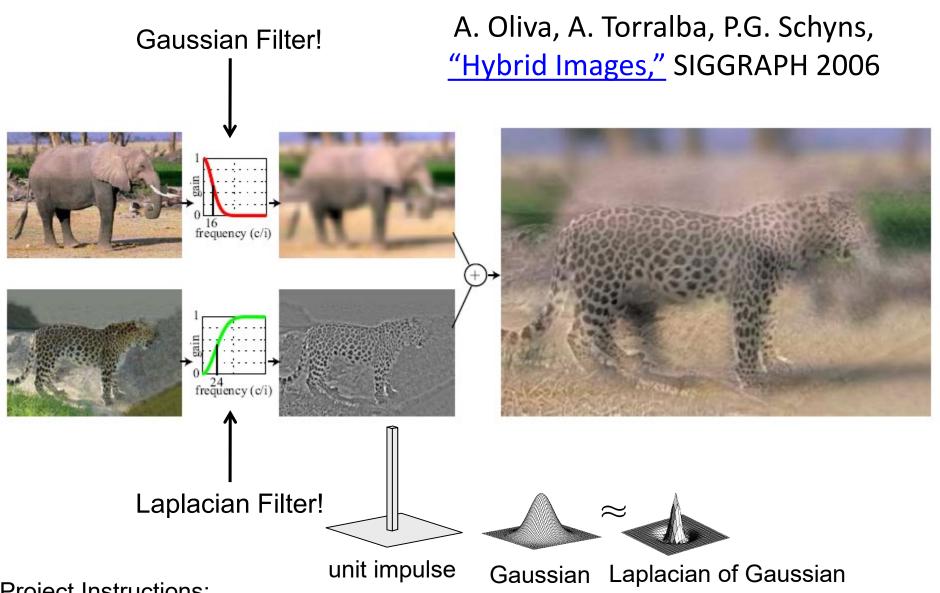
Can you match the texture to the response?



Representing texture by mean abs response



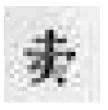
Project 1: Hybrid Images



Project Instructions:

Take-home messages

Image is a matrix of numbers



- Linear filtering is a dot product at each position
 - Can smooth, sharpen, translate (among many other uses)

1 9	1	1	1
	1	1	1
	1	1	1

 Be aware of details for filter size, extrapolation, cropping

 Start thinking about project (read the paper, create a test project page)

Take-home questions

1. Write down a 3x3 filter that returns a positive value if the average value of the 4-adjacent neighbors is less than the center and a negative value otherwise

2. Write down a filter that will compute the gradient in the x-direction:

```
gradx(y,x) = im(y,x+1)-im(y,x) for each x, y
```

Take-home questions

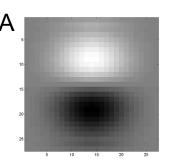
Filtering Operator

3. Fill in the blanks:

b)
$$A = _{-} * _{-}$$

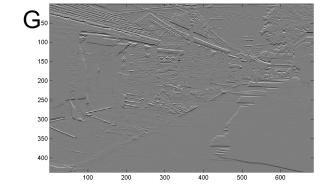
c)
$$F = D *$$

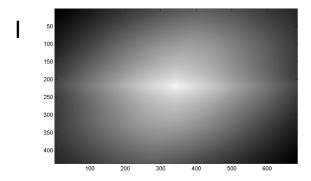
$$d) = D * D$$

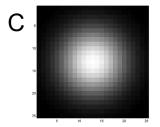


F

Н







Next class: Thinking in Frequency

