Pixels and Image Filtering

Computational Photography
Derek Hoiem



Today’s Class: Pixels and Linear Filters

 What is a pixel? How is an image represented?
 What is image filtering and how do we do it?

* Introduce Project 1: Hybrid Images



Next three classes

* |mage filters in spatial domain

— Smoothing, sharpening, measuring texture

* Image filters in the frequency domain

— Denoising, sampling, image compression

 Templates and Image Pyramids

— Detection, coarse-to-fine registration
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Digital camera

Digital camera replaces film with a sensor array

* Each cellin the array is light-sensitive diode that converts photons to
electrons

* http://electronics.howstuffworks.com/digital-camera.htm



http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

CCD sensor




The raster image (pixel matrix)
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Photo by Phil Greenspun used with permission




The raster image (pixel matrix)
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Perception of Intensity

from Ted Adelson



Perception of Intensity

.

from Ted Adelson



Digital Color Images

Incoming Light

Filter Layer

Sensor Array

Resulting Pattern

https://commons.wikimedia.org/wiki/File:BayerPatternFiltration.png



Color Image




Images in Python

im = cv2.imread(filename) # read image
im = cv2.cvtColor (im, cv2.COLOR BGR2RGB) # order channels as RGB
im = im / 255 # values range from 0 to 1

e RGBimage im isaHx W x 3 matrix (numpy.ndarray)

e im[0,0,0] =top-left pixel value in R-channel

« im[y, x, c] =y+1 pixels down, x+1 pixels to right in the cth channel
e im[H-1, W-1, 2] =bottom-right pixel in B-channel
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Image filtering

* Image filtering: compute function of local
neighborhood at each position

e Really important!

— Enhance images

* Denoise, resize, increase contrast, etc.

— Extract information from images
* Texture, edges, distinctive points, etc.

— Detect patterns
* Template matching



Example: box filter
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Slide credit: David Lowe (UBC)



Image filtering T
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Credit: S. Seitz



Image filtering T
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Image filtering T
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Image filtering T
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Image filtering T
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Image filtering
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Image filtering
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Image filtering
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Image filtering T
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Box Filter

What does it do?

* Replaces each pixel with 111 | 1
an average of its 1
neighborhood — (1| 1] 1

9
111 | 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)



Smoothing with box filter




One more by hand...
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Practice with linear filters
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Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters
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Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters
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(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters
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Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Other filters
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Other filters

Horizontal Edge
(absolute value)



How could we synthesize motion blur?

theta = 30

len = 21

mid = (len-1)/2

fil = np.zeros((len,len))
fil[:,int(mid)] = 1/len

R = cv2.getRotationMatrix2D( (mid,mid), theta, 1)
fil = cv2.warpAffine(fil,R, (len, len))

im fil = cv2.filter2D(im, -1, fil)



Correlation vs. Convolution

e 2d correlation
im fil = cv2.filter2d(im, -1, fil)

im_ fillm,n) =" fillk,[]im[m+k,n+I]

e 2d convolution

im fil = scipy.signal.convolve2d(im, fil, [opts])

im_ fillm,n) =" fillk,[]im[m—k,n—1]

e “convolve” mirrors the kernel, while “filter” doesn’t

cvZ2.filter2D(im, -1, cv2.flip(fil,-1)) sameas
signal.convolve2d(im, fil,mode="'same', boundary="'symm’ )



Key properties of linear filters

Linearity:
filter(f, + £,) = filter(f;) + filter (f,)

Shift invariance: same behavior regardless of

pixel location
filter (shift (f)) = shift (filter (f))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik



More properties

Commutative:a*b=>b * a
— Conceptually no difference between filter and signal (image)

Associative:a* (b*c)=(a*b) *c
— Often apply several filters one after another: (((a * b;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)

Distributes over addition:a * (b+c)=(a * b) + (a * ¢)
Scalars factor out: ka *b=a *kb =k (a * b)

ldentity: unit impulse e = [0, O, 1, O, 0],
a*e=a

Source: S. Lazebnik



Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

(@2
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Slide credit: C. Rasmussen




Smoothing with Gaussian filter




Smoothing with box filter




Gaussian filters

e Remove “high-frequency” components from the
image (low-pass filter)
— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and
get same result as larger-width kernel would have

— Convolving two times with Gaussian kernel of width
o is same as convolving once with kernel of width

o2
e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter
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The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Separability example

2D filtering > 14 |2 3
(center location only)

&N
N

The filter factors 112 |1 Tl x [1]2]1
into a product of 1D 2 1412 1=]>
filters: 12 1 1
o 2 13]3 11
Perform filtering T «E 1= —
along rows:
4 14 |6 18

Followed by filtering
along the remaining column:

Source: K. Grauman



Separability

e Why is separability useful in practice?



Some practical matters



Practical matters
How big should the filter be?

* Values at edges should be near zero

 Rule of thumb for Gaussian: set kernel half-width to
>>30




Practical matters

 What about near the edge?
— the filter window falls off the edge of the image
— need to extrapolate -
— methods: , .
* clip filter (black)
* wrap around

* copy edge
* reflect across edge

Source: S. Marschner



Practical matters

— methods (Python):
° clip filter (black): convolve2d(f, g, boundary=‘fill’,0)
* wrap around: convolveZ2d (f, g, boundary=‘wrap’)

 reflect across edge: convolve2d(f, g, boundary=‘symm’)



Practical matters

 What is the size of the output?

e Python: convolve2d(g, £, mode)
— mode = ‘full’: output size is sum of sizesof fand g
— mode = ‘same’: output size is same as f
— mode = ‘valid’: output size is difference of sizes of f and g

R 1Y || same valid




Application: Representing Texture

Source: Forsyth



exture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



What is texture?

Regular or stochastic patterns caused by
bumps, grooves, and/or markings



How can we represent texture?

 Compute responses of blobs and edges at
various orientations and scales



Overcomplete representation: filter banks

LM Filter Bank
ENNIAEESNINZE
ESNIDEE - - -
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Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



Filter banks

* Process image with each filter and keep
responses (or squared/abs responses)




How can we represent texture?

* Measure responses of blobs and edges at
various orientations and scales

* Record simple statistics (e.g., mean, std.) of
absolute filter responses



Can you match the texture to the response?

Filters

Mean abs responses



Representing texture by mean abs response

Filters

Mean abs responses



Project 1: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Gaussian Filter!

Laplacian Filter!

U

. . unitimpulse  Gaussian Laplacian of Gaussian
Project Instructions:

https://courses.engr.illinois.edu/cs445/fa2019/projects/hybrid/ ComputationalPhotography ProjectHybrid.html



https://courses.engr.illinois.edu/cs445/fa2019/projects/hybrid/ComputationalPhotography_ProjectHybrid.html
http://cvcl.mit.edu/hybridimage.htm




Take-home messages

* Image is a matrix of numbers

* Linear filtering is a dot product at each

position

— Can smooth, sharpen, translate (among

many other uses)

 Be aware of details for filter size,
extrapolation, cropping

e Start thinking about project (read the
paper, create a test project page)




Take-home questions

1. Write down a 3x3 filter that returns a
positive value if the average value of the 4-
adjacent neighbors is less than the center
and a negative value otherwise

2. Write down a filter that will compute the
gradient in the x-direction:

gradx(y,x) = im(y,x+1)-im(y,x) for each x, vy



Ta ke-home questions /Filtering Operator
B
3. Fillin the blanks: A

o)
I
),

> |

* ok ko



Next class: Thinking in Frequency
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