Pixels and Image Filtering

Computational Photography
Derek Hoiem

Today’s Class: Pixels and Linear Filters

 What is a pixel? How is an image represented?
 What is image filtering and how do we do it?

* Introduce Project 1: Hybrid Images

Next three classes

* |mage filters in spatial domain

— Smoothing, sharpening, measuring texture

* Image filters in the frequency domain

— Denoising, sampling, image compression

 Templates and Image Pyramids

— Detection, coarse-to-fine registration

Image Formation

Illumination (energy)

‘:7/ L\ source Ml

r
1 |] |-
o -
o -1 |

Imaging system T

(Internal) image plane

Scene element

Digital camera

Digital camera replaces film with a sensor array

* Each cellin the array is light-sensitive diode that converts photons to
electrons

* http://electronics.howstuffworks.com/digital-camera.htm

http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

CCD sensor

The raster image (pixel matrix)

du

o

glEmit,

phil

Photo by Phil Greenspun used with permission

The raster image (pixel matrix)

092 [0.93 | 094 | 097 | 0.62 [0.37 | 0.85 | 0.97 [0.93 | 0.92 | 0.99

=~ | flo95|089 |08 |08 |056|031 075092081 095|091

=~ #1089 072|051 055051042057 | 041|049 091 | 092
S— J 096 | 0.95 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95
= x4 071 | 0.81 | 0.81 | 0.87 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85
% | /& 0.49 | 062 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33

0.86 | 0.84 [0.74 | 0.58 | 0.51 | 0.39 [0.73 | 0.92 | 0.91 | 0.49 [0.74

096 [0.67 | 0.54 [0.85 | 048 [0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93

0.69 | 0.49 [0.56 | 0.66 | 0.43 | 042 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99

0.79 [0.73 | 090 [0.67 | 0.33 [0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97

091 | 0.94 { 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93

= Tk

= T

—1
- T
Z-u-,_,
-
- B
e s ey
> > SR T ol
Rl _._\::_“‘ 4 l"_'\-—-r -
; SRR B £
- = b
—_— e i r
— T — Fa
=3 - s
S r e
o - X
. i =
. - 5§ e =
e~

Perception of Intensity

from Ted Adelson

Perception of Intensity

.

from Ted Adelson

Digital Color Images

Incoming Light

Filter Layer

Sensor Array

Resulting Pattern

https://commons.wikimedia.org/wiki/File:BayerPatternFiltration.png

Color Image

Images in Python

im = cv2.imread(filename) # read image
im = cv2.cvtColor (im, cv2.COLOR BGR2RGB) # order channels as RGB
im = im / 255 # values range from 0 to 1

e RGBimage im isaHx W x 3 matrix (numpy.ndarray)

e im[0,0,0] =top-left pixel value in R-channel

« im[y, x, c] =y+1 pixels down, x+1 pixels to right in the cth channel
e im[H-1, W-1, 2] =bottom-right pixel in B-channel

column >
row
092 | 0.93 | 094 [097 | 062 | 037 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 |
095 | 0.89 | 0.82 | 0.89 | 056 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 | G
0.89 | 0.72 | 0.51 | 0.55 555 1 059
0.96 | 095 | 0.88 | 0.94 0.95 | 091 B
0.71 | 0.81 | 0.81 | 0.87
0.91 | 0.92
0.49 | 0.62 | 0.60 | 0.58 0.92 | 099
0.97 | 0.95
0.86 | 0.84 | 0.74 | 0.58 0.95 | 0.91
0.79 | 0.85
0.96 | 0.67 | 0.54 | 0.85 0.91 | 0.92
0.45 | 0.33
0.69 | 0.49 | 0.56 | 0.66 0.97 | 0.95
0.49 | 0.74
0.79 | 0.73 | 0.90 | 0.67 0.79 | 0.85
0.82 | 0.93
\ 4 091 | 0.94 | 0.89 | 0.49 045 | 0.33
OO : : 0.90 | 0.99 0.49 0.74
0.79 | 0.73 | 090 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 0'82 0'93
091 | 0.94 [0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | :
Foroo oo ereo oo o re— o oo o= 0.90 | 0.99
{079 [073] 090|067]033[061]069]079]073]093]0097
f 091 | 094 [089 [049 | 041 | 078 | 0.78 [0.77 | 0.89 | 0.99 | 0.93

Image filtering

* Image filtering: compute function of local
neighborhood at each position

e Really important!

— Enhance images

* Denoise, resize, increase contrast, etc.

— Extract information from images
* Texture, edges, distinctive points, etc.

— Detect patterns
* Template matching

Example: box filter

1|1 | 1

1

— 1] 1]
1|1 | 1

Slide credit: David Lowe (UBC)

Image filtering T

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering T

him,n] =Y glk,l] flm+k,n+I]

k.l Credit: S. Seitz

Image filtering T

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering T

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering T

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering

/1] hl.,.]

30

30

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering

30

30

50

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Image filtering T

him,n] =Y glk,l] flm+k,n+I]

Credit: S. Seitz

Box Filter

What does it do?

* Replaces each pixel with 111 | 1
an average of its 1
neighborhood — (1| 1] 1

9
111 | 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)

Smoothing with box filter

One more by hand...

1 1 0
1

2 2 0
* 0

0 0 1
0

1 1 2

Practice with linear filters

0/o|o0 9
0l1]0 e
0o/o|o0

Original

Source: D. Lowe

Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe

Practice with linear filters

0/o|o0 9
00| 1 e
0o/o|o0

Original

Source: D. Lowe

Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe

Practice with linear filters

01010 111 1
1
01210 mm 1] 1] 1 ?
®) °
01010 111 1

(Note that filter sums to 1)

Original

Source: D. Lowe

Practice with linear filters

000 1 11111

0(2]0 - 1111
9

000 11111

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe

Sharpening

before

Source: D. Lowe

Other filters

110]-1

2|10]|-2

110]-1
Sobel

\ 1
\ 'jl hY)

Vertical Edge
(absolute value)

Q?

Other filters

Horizontal Edge
(absolute value)

How could we synthesize motion blur?

theta = 30

len = 21

mid = (len-1)/2

fil = np.zeros((len,len))
fil[:,int(mid)] = 1/len

R = cv2.getRotationMatrix2D((mid,mid), theta, 1)
fil = cv2.warpAffine(fil,R, (len, len))

im fil = cv2.filter2D(im, -1, fil)

Correlation vs. Convolution

e 2d correlation
im fil = cv2.filter2d(im, -1, fil)

im_ fillm,n) =" fillk,[]im[m+k,n+I]

e 2d convolution

im fil = scipy.signal.convolve2d(im, fil, [opts])

im_ fillm,n) =" fillk,[]im[m—k,n—1]

e “convolve” mirrors the kernel, while “filter” doesn’t

cvZ2.filter2D(im, -1, cv2.flip(fil,-1)) sameas
signal.convolve2d(im, fil,mode="'same', boundary="'symm’)

Key properties of linear filters

Linearity:
filter(f, + £,) = filter(f;) + filter (f,)

Shift invariance: same behavior regardless of

pixel location
filter (shift (f)) = shift (filter (f))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik

More properties

Commutative:a*b=>b * a
— Conceptually no difference between filter and signal (image)

Associative:a* (b*c)=(a*b) *c
— Often apply several filters one after another: (((a * b;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)

Distributes over addition:a * (b+c)=(a * b) + (a * ¢)
Scalars factor out: ka *b=a *kb =k (a * b)

ldentity: unit impulse e = [0, O, 1, O, 0],
a*e=a

Source: S. Lazebnik

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

(@2

0.003
0.013
0.022
0.013
0.003

0.013
0.059
0.097
0.059
0.013

0.022 0.013 0.003
0.097 0.059 0.013
0.159 0.097 0.022
0.097 0.059 0.013
0.022 0.013 0.003

5x5,6=1

Slide credit: C. Rasmussen

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

e Remove “high-frequency” components from the
image (low-pass filter)
— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and
get same result as larger-width kernel would have

— Convolving two times with Gaussian kernel of width
o is same as convolving once with kernel of width

o2
e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

_X2—|— y2
G,(x _ 207
(xy) = S exp 2
1 x> y2
— (— exp 2—52) L exp 202
V2To V 2mo

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe

Separability example

2D filtering > 14 |2 3
(center location only)

&N
N

The filter factors 112 |1 Tl x [1]2]1
into a product of 1D 2 1412 1=]>
filters: 12 1 1
o 2 13]3 11
Perform filtering T «E 1= —
along rows:
4 14 |6 18

Followed by filtering
along the remaining column:

Source: K. Grauman

Separability

e Why is separability useful in practice?

Some practical matters

Practical matters
How big should the filter be?

* Values at edges should be near zero

 Rule of thumb for Gaussian: set kernel half-width to
>>30

Practical matters

 What about near the edge?
— the filter window falls off the edge of the image
— need to extrapolate -
— methods: , .
* clip filter (black)
* wrap around

* copy edge
* reflect across edge

Source: S. Marschner

Practical matters

— methods (Python):
° clip filter (black): convolve2d(f, g, boundary=‘fill’,0)
* wrap around: convolveZ2d (f, g, boundary=‘wrap’)

 reflect across edge: convolve2d(f, g, boundary=‘symm’)

Practical matters

 What is the size of the output?

e Python: convolve2d(g, £, mode)
— mode = ‘full’: output size is sum of sizesof fand g
— mode = ‘same’: output size is same as f
— mode = ‘valid’: output size is difference of sizes of f and g

R 1Y || same valid

Application: Representing Texture

Source: Forsyth

exture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/

What is texture?

Regular or stochastic patterns caused by
bumps, grooves, and/or markings

How can we represent texture?

 Compute responses of blobs and edges at
various orientations and scales

Overcomplete representation: filter banks

LM Filter Bank
ENNIAEESNINZE
ESNIDEE - - -
llllllEﬂlﬂl

- -+« EEED

Code for filter banks: www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Filter banks

* Process image with each filter and keep
responses (or squared/abs responses)

How can we represent texture?

* Measure responses of blobs and edges at
various orientations and scales

* Record simple statistics (e.g., mean, std.) of
absolute filter responses

Can you match the texture to the response?

Filters

Mean abs responses

Representing texture by mean abs response

Filters

Mean abs responses

Project 1: Hybrid Images

A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

Gaussian Filter!

Laplacian Filter!

U

. . unitimpulse Gaussian Laplacian of Gaussian
Project Instructions:

https://courses.engr.illinois.edu/cs445/fa2019/projects/hybrid/ ComputationalPhotography ProjectHybrid.html

https://courses.engr.illinois.edu/cs445/fa2019/projects/hybrid/ComputationalPhotography_ProjectHybrid.html
http://cvcl.mit.edu/hybridimage.htm

Take-home messages

* Image is a matrix of numbers

* Linear filtering is a dot product at each

position

— Can smooth, sharpen, translate (among

many other uses)

 Be aware of details for filter size,
extrapolation, cropping

e Start thinking about project (read the
paper, create a test project page)

Take-home questions

1. Write down a 3x3 filter that returns a
positive value if the average value of the 4-
adjacent neighbors is less than the center
and a negative value otherwise

2. Write down a filter that will compute the
gradient in the x-direction:

gradx(y,x) = im(y,x+1)-im(y,x) for each x, vy

Ta ke-home questions /Filtering Operator
B
3. Fillin the blanks: A

o)
I
),

> |

* ok ko

Next class: Thinking in Frequency

	Pixels and Image Filtering
	Today’s Class: Pixels and Linear Filters
	Next three classes
	Image Formation
	Digital camera
	Sensor Array
	The raster image (pixel matrix)
	The raster image (pixel matrix)
	Perception of Intensity
	Perception of Intensity
	Digital Color Images
	Color Image
	Images in Python
	Image filtering
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	One more by hand…
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Sharpening
	Other filters
	Other filters
	How could we synthesize motion blur?
	Correlation vs. Convolution
	Key properties of linear filters
	More properties
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Gaussian filters
	Separability of the Gaussian filter
	Separability example
	Separability
	Some practical matters
	Practical matters
	Practical matters
	Practical matters
	Practical matters
	Application: Representing Texture
	Texture and Material
	Texture and Orientation
	Texture and Scale
	What is texture?
	How can we represent texture?
	Overcomplete representation: filter banks
	Filter banks
	How can we represent texture?
	Can you match the texture to the response?
	Representing texture by mean abs response
	Project 1: Hybrid Images
	Slide Number 65
	Take-home messages
	Take-home questions
	Take-home questions
	Next class: Thinking in Frequency

