Midterm Review

Magritte, Homesickness

Computational Photography Derek Hoiem, University of Illinois

Major Topics

- Linear Filtering
 - How it works
 - Template and Frequency interpretations
 - Image pyramids and their applications
 - Sampling (Nyquist theorem, application of low-pass filtering)
- Light and color
 - Lambertian shading, shadows, specularities
 - Color spaces (RGB, HSV, LAB)
 - Image-based lighting
- Techniques
 - Finding boundaries: intelligent scissors, graph cuts, where to cut and why
 - Texture synthesis: idea of sampling patches to synthesize, filling order
 - Compositing and blending: alpha compositing, Laplacian blending, Poisson editing
- Warping
 - Transformation matrices, homogeneous coordinates, solving for parameters via system of linear equations
- Modeling shape
 - Averaging and interpolating sets of points

Major Topics

- Camera models and Geometry
 - Pinhole model: diagram, intrinsic/extrinsic matrices, camera center (or center of projection), image plane
 - Focal length, depth of field, field of view, aperture size
 - Vanishing points and vanishing lines (what they are, how to find them)
 - Measuring relative lengths based on vanishing points and horizon
- Interest points
 - Trade-offs between repeatability and distinctiveness for detectors and descriptors
 - Harris (corner) detectors and Difference of Gaussian (blob) detectors
 - SIFT representation: what transformations is it robust to or not robust to
- Image stitching
 - Solving for homography
 - RANSAC for robust detection of inliers
- Object recognition and search
 - Use of "visual words" to speed search
 - Idea of geometric verification to check that points have consistent geometry
- Other camera systems
 - Kinect, lightfield camera, synthetic aperture --- how do they work?

Preparing for the Exam

Topics include:

- Filtering (inc. apply, design, interpret simple filters, frequency interpretation, properties of filters)
- Lighting (inc. lighting and material models)
- Camera models (inc. pinhole model and its applications, effects of lens and camera controls)
- **Single view geometry** (inc. relative measurements within an image)
- Interest points and correspondence (inc. interest point detectors, matching, retrieval based on interest points)
- Alignment/transformations (inc. global transformations, setting up matrix to solve for a transformation, RANSAC)
- Color spaces, pyramids, and sampling
- "Topics of Interest" and other
- Each bullet has 10-20 points allocated (out of 100)
- There are 10 questions.
- Questions about special topics typically require that you understand the key concepts that are presented.
- Bring a photo ID
- You cannot use notes or calculator

Today's review

1. Light

- 2. Camera capture and geometry
- 3. Image filtering
- 4. Region selection and compositing
- 5. Solving for transformations

Purposes

- Remind you of key concepts
- Chance for you to ask questions

1. Light and color

- Lighting
 - Lambertian shading, shadows, specularities
 - Color spaces (RGB, HSV, LAB)

How is light reflected from a surface?

Depends on

- Illumination properties: wavelength, orientation, intensity
- Surface properties: material, surface orientation, roughness, etc.

Lambertian surface

- Some light is absorbed (function of albedo)
- Remaining light is reflected equally in all directions (diffuse reflection)
- Examples: soft cloth, concrete, matte paints

Diffuse reflection

Intensity does depend on illumination angle because less light comes in at oblique angles.

 $\rho = \mathsf{albedo}$

- **S** = directional source
- N = surface normal
- I = image intensity

$$I(x) = \rho(x)(\boldsymbol{S} \cdot \boldsymbol{N}(x))$$

Diffuse reflection

Intensity does not depend on viewer angle.

- Amount of reflected light proportional to cos(theta)
- Visible solid angle also proportional to cos(theta)

Specular Reflection

- Reflected direction depends on light orientation and surface normal
- E.g., mirrors are mostly specular

Flickr, by suzysputnik

Flickr, by piratejohnny

Many surfaces have both specular and diffuse components

 Specularity = spot where specular reflection dominates (typically reflects light source)

Photo: northcountryhardwoodfloors.com

Questions

1.

A. For each of the arrows in the above image, name the reasons the pixel near the end of the arrow has its brightness value and explain very briefly. The arrow pointing to milk is pointing to the thin bright line at the edge of the piece of apple; the arrow pointing to the spoon handle is pointing to the bright area on the handle.

Possible factors: albedo, shadows, texture, specularities, curvature, lighting direction

Discretization

• Because pixel grid is discrete, pixel intensities are determined by a range of scene points

a b FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Scene element

Color Sensing: Bayer Grid

Incoming Light Filter Layer Sensor Array **Resulting Pattern**

Estimate RGB at each cell from neighboring values

http://en.wikipedia.org/wiki/Bayer_filter

Color spaces

RGB

HSV

YCbCr

Image Histograms

Gamma adjustment

$$i_{out} = i_{in}^{\gamma}$$
 γ

Histogram Equalization

2. Camera Capture and Geometry

Pinhole Camera

Useful figure to remember

Projection Matrix

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X} \Longrightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Single-view metrology

Assume the man is 6 ft tall.

- What is the height of the building?
- How long is the right side of the building compared to the small window on the right side of the building?

Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

Focal length, aperture, depth of field

A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

The aperture and depth of field

Main way to increase depth of field: Decrease aperture size

F-number (f/#) =focal_length / aperture_diameter

- E.g., f/16 means that the focal length is 16 times the diameter
- When you set the f-number of a camera, you are setting the aperture

3. Linear filtering

- Can think of filtering as
 - A function in the spatial domain (e.g., compute average of each 3x3 window)
 - Template matching
 - Modifying the frequency of the image

Filtering in spatial domain

Slide filter over image and take dot product at each position

f[.,.]										
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	90	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0

	_
h[.	,.]

0	10	20	30	30		
			?			

1.Filters

a) Compute the center four values of the filter response, using the filter and image given below.

Х Х Х Х Х Х → Х Х Х Х Х Х

Filter Response

Filtering in spatial domain

Filtering in frequency domain

• Can be faster than filtering in spatial domain (for large filters)

• Can help understand effect of filter

- Algorithm:
 - 1. Convert image and filter to fft (fft2 in matlab)
 - 2. Pointwise-multiply ffts
 - 3. Convert result to spatial domain with ifft2

Filtering in frequency domain

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)

[-1 1]

Gaussian
Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box Filter

 Use filtering to find pixels that have at least three white pixels among the 8 surrounding pixels (assume a binary image)

2. Write down a filter that will compute the following function

3. Fill in the blanks:

Filtering Operator
a)
$$= D * B$$

b) $A = * - A$
c) $F = D * - A$
d) $= D * C$

Н

B

5 10 15 20

Match the spatial domain image to the Fourier magnitude image

Matching with filters

- Goal: find 💽 in image
- Method 2: SSD $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$

Matching with filters

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m-k,n-l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m-k,n-l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Matlab: normxcorr2(template, im)

Matching with filters

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Normalized X-Correlation

Input

Thresholded Image

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Problem: This approach causes "aliasing"

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\ge 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Algorithm for downsampling by factor of 2

- 1. Start with image(h, w)
- 2. Apply low-pass filter

im_blur = imfilter(image, fspecial('gaussian', 13, 2))

3. Sample every other pixel

im_small = im_blur(1:2:end, 1:2:end);

Subsampling without pre-filtering

1/8 (4x zoom) 1/4 (2x zoom)

Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Gaussian pyramid

- Useful for coarse-to-fine matching
- Applications include multi-scale object detection, image alignment, optical flow, point tracking

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Image reconstruction from Laplacian pyramid

4. Region selection and compositing

- Selecting image regions
 - Intelligent scissors
 - Graph cuts
- Compositing
 - Alpha masks
 - Feathering
 - Laplacian pyramid blending
 - Poisson blending

Intelligent Scissors

- You can treat the image as a graph
 - Nodes = pixels, edges connect neighboring pixels

Intelligent Scissors: Good boundaries are a short (high gradient) path through the graph

Graph Cuts

- You can treat the image as a graph
 - Nodes = pixels, edges connect neighboring pixels

Graph cut: Good boundaries are a cheap cut, where some pixels want to be foreground, and some to be background

Compositing and Blending

- Feathering: blur mask around its edges
- Laplacian blending: blend low-frequency slowly, high frequency quickly
 - Blend with alpha mask values ranging from 0 to 1

- 1) I am trying to blend this bear into this pool. What problems will I have if I use:
 - a) Alpha compositing with feathering
 - b) Laplacian pyramid blending
 - c) Poisson editing?

Keypoint Matching

 $d(f_A, f_B) < T$

- 1. Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region

5. Match local descriptors

Key trade-offs

Localization

More Points Robust to occlusion Works with less texture

Description

More Repeatable

Robust detection Precise localization

More Robust Deal with expected variations Maximize correct matches

More Selective Minimize wrong matches

Harris Detector [Harris88]

• Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
1. Image derivatives
$$2. \text{ Square of derivatives}}$$

$$2. \text{ Square of derivatives}}$$

$$3. \text{ Gaussian filter } g(\sigma_{I})$$

$$g(I_{x}I_{y}) = g(I_{x}I_{y}) = g(I_{x}I_{y})$$

$$g(I_{x}I_{y}) = g(I_{x}I_{y})$$

har

4. Cornerness function – both eigenvalues are strong $har = \det[\mu(\sigma_I, \sigma_D)] - \alpha[\operatorname{trace}(\mu(\sigma_I, \sigma_D))^2] = g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$

5. Non-maxima suppression

Harris Detector – Responses [Harris88]

Applications

- Image stitching
 - Matching keypoints
 - Solving for homography
 - RANSAC

- Object recognition
 - Clustering keypoints and creating tf-idf tables for fast retrieval
 - Geometric verification

5. Solving for transformations

• Map between 2D coordinates using linear projection

Name	Matrix	# D.O.F.	Preserves:	Icon	
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$		
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc	
similarity	$\left[\left s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\Diamond	
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$		
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines		

Least-squares Solving

If all points (or correspondences) fit the model with some noise, better to use all for least squares estimate

Least-squares Solving

If some points are outliers, robust approach such as RANSAC is needed

RANSAC: RANdom SAmple Consensus

RANSAC Algorithm

- Repeat N times
 - 1. Randomly select a sample
 - Select just enough points to recover the parameters
 - 2. Fit the model with random sample
 - 3. See how many other points agree
- Best estimate is one with most agreement
 - can use agreeing points to refine estimate

Example of 2D line fitting

Suppose we have two triangles, ABC and DEF, related by a general affine transformation. Solve for the transformation.

Good luck!

• Questions?

Take-home questions

2) How would you make a sharpening filter using gradient domain processing? What are the constraints on the gradients and the intensities?

Take-home question

Suppose you have estimated three vanishing points corresponding to orthogonal directions. How can you recover the rotation matrix that is aligned with the 3D axes defined by these points?

- Assume that intrinsic matrix K has three parameters
- Remember, in homogeneous coordinates, we can write a 3d point at infinity as (X, Y, Z, 0)

Photo from online Tate collection