Video Magnification

Magritte, “The Listening Room”

Computational Photography
Derek Hoiem, University of Illinois
Today

1. Video Magnification
 - Lagrangian (point tracking) approach
 - Eulerian (signal within a pixel) approach

2. Video Microphone
Imperceptible Motions and Changes

[Liu et al. 2005] [Wu et al. 2012]
MAGNIFIED Imperceptible Motions and Changes

[Liu et al. 2005] [Wu et al. 2012]
Motion Magnification

Goal: exaggerate selected motions

Ideas?
Approach 1: Point Tracking

Motion Magnification (SIGGRAPH 2005)

Ce Liu Antonio Torralba William T. Freeman Frédo Durand Edward H. Adelson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Following slides based on SG 2005 presentation:
http://people.csail.mit.edu/celiu/motionmag/motionmag.html
Naïve Approach

- Magnify the estimated optical flow field
- Rendering by warping
Tracking-based Motion Magnification

(a) Registered input frame
(b) Clustered trajectories of tracked features
(c) Layers of related motion and appearance
(d) Motion magnified, showing holes
(e) After texture in-painting to fill holes
(f) After user’s modifications to segmentation map in (c)

Liu et al. *Motion Magnification*, 2005
Robust Video Registration

- Find feature points with Harris corner detector on the reference frame
- Track feature points
- Select a set of robust feature points with inlier and outlier estimation (most from the rigid background)
- Warp each frame to the reference frame with a global affine transform
Feature tracking trick 1: Adaptive Region of Support

- SSD patch matching search
- Learn adaptive region of support using expectation-maximization (EM) algorithm

Confused by occlusion!
Feature tracking trick 2: trajectory pruning

- Tracking with adaptive region of support
 - Nonsense at full occlusion!

- Outlier detection and removal by interpolation
 - Outliers
Comparison

Without adaptive region of support and trajectory pruning

With adaptive region of support and trajectory pruning
Cluster trajectories based on normalized complex correlation

• The similarity metric should be independent of phase and magnitude
• Normalized complex correlation

\[
S(C_1, C_2) = \frac{| \sum_t C_1(t) \overline{C}_2(t) |^2}{\sqrt{\sum_t C_1(t) \overline{C}_1(t)} \sqrt{\sum_t C_2(t) \overline{C}_2(t)}}
\]
Spectral Clustering

Affinity matrix

Clustering

Reordering of affinity matrix

Two clusters

Trajectory
Clustering Results
From Sparse Feature Points to Dense Optical Flow Field

Interpolate dense optical flow field using locally weighted linear regression

Cluster 1: leaves
Cluster 2: swing
Motion Layer Assignment

• Assign each pixel to a motion cluster layer, using four cues:
 – **Motion likelihood**—consistency of pixel’s intensity if it moves with the motion of a given layer (dense optical flow field)
 – **Color likelihood**—consistency of the color in a layer
 – **Spatial connectivity**—adjacent pixels favored to belong the same group
 – **Temporal coherence**—label assignment stays constant over time

• Energy minimization using graph cuts
Segmentation Results

Two additional layers: static background and outlier
Layered Motion Representation for Motion Processing

Background

Layer 1

Layer 2

Layer mask

Occluding layers

Appearance for each layer before texture filling-in

Appearance for each layer after texture filling-in
Discussion of point tracking approach

- Good: applies to any motion
- Bad: requires accurate point tracking, clustering and texture synthesis, so likely to fail
Approach 2: pixelwise processing

Eulerian Video Magnification for Revealing Subtle Changes in the World
Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Fredo Durand, William T. Freeman
ACM Transactions on Graphics, Volume 31, Number 4 (Proc. SIGGRAPH) 2012

Phase-based Video Motion Processing
Neal Wadhwa, Michael Rubinstein, Fredo Durand, William T. Freeman
ACM Transactions on Graphics, Volume 32, Number 4 (Proc. SIGGRAPH) 2013

Following slides based on Siggraph presentations:
http://people.csail.mit.edu/mrub/vidmag/
http://people.csail.mit.edu/nwadhwa/phase-video/
Lagrangian and Eulerian Perspectives: Fluid Dynamics
Eulerian Perspective: Videos

• Each pixel is processed independently
• Treat each pixel as a time series and apply signal processing to it
Method Overview

Schematic diagram of the method overview:

1. Spatial Decomposition
2. Temporal Filtering
3. Reconstruction

Key steps:
- Laplacian Pyramid
- Bandpass filter intensity at each pixel over time
- Amplify bandpassed signal and add back to original
Subtle Color Variations

- The face gets slightly redder when blood flows
- Unfortunately usually below the per pixel noise level
Subtle Color Variations

1. Average spatially to overcome sensor and quantization noise

Input frame

Spatially averaged luminance trace
Amplifying Subtle Color Variations

2. Filter temporally to extract the signal of interest

- Spatially averaged luminance trace
- Temporal filter

\[\text{Temporal filter} \times \text{Spatially averaged luminance trace} = \text{Temporally bandpassed trace} \]
Color Amplification Results

Source

Color-amplified (x100)
0.83-1 Hz (50-60 bpm)
Heart Rate Extraction

Peak detection

Temorally bandpassed trace (one pixel)

Pulse locations
Heart Rate Extraction

Heart Rate Extraction

Thanks to Dr. Donna Brezinski and the Winchester Hospital staff 2.33-2.67 Hz (140-160 bpm)
Why It Amplifies Motion
$$(1 + \alpha)B(x,t) \approx (\delta(t) \mu(x) \delta(t)) I'(x,t)$$

(1st order Taylor expansion)
Relating Temporal and Spatial Changes

![Graph showing signal changes over time and space.]

- **Black line**: Signal at time t
- **Blue line**: Signal at time $t + 1$
- **Red line**: Motion-magnified

Courtesy of Lili Sun
Synthetic 2D Example
Selective Motion Magnification

Source
(Single video with 4 blobs)

Temporal filter:

1-3 Hz
Selective Motion Magnification

Source
(Single video with 4 blobs)

Motion-magnified (3 Hz)

Temporal filter: 2-4 Hz
Selective Motion Magnification

Source (Single video with 4 blobs)

Motion-magnified (5 Hz)

(Temporal filter: 4-6 Hz)
Selective Motion Magnification

Source
(Single video with 4 blobs)

Motion-magnified (7 Hz)

Temporal filter:
6-8 Hz
When Does It Break?

Intensity

Signal at time t

Signal at time $t + 1$

Motion-magnified
Motion Magnification Artifacts

Source Motion-magnified (3.6-6.2 Hz, x60)
Scale-varying Amplification

• The amplification is more accurate for low spatial frequencies
 – Images are smoother
 – Motions are smaller

• Use the desired α for lower spatial frequencies, and attenuate for the higher spatial frequencies
Motion Magnification Results

Source

Motion-magnified (0.4-3 Hz, x10)
Discussion of pixelwise intensity amplification approach

• Good:
 – Does not require explicit motion estimation or texture synthesis (robust)
 – Very fast (real time)

• Bad:
 – Can only handle very small motions
 – Amplifies noise
Limitations of Linear Motion Processing

- Noise amplified with signal

\[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial t} \quad \frac{\partial x}{\partial t} \]

![Graph showing intensity vs. space with signal and motion-magnified lines](image)
Limitations of Linear Motion Processing

Source

Linear SIGGRAPH’12

Overshoot

Overshoot
Eulerian approach part 2: shift phase instead of amplifying intensity

Translation in space is equivalent to a shift in phase

- **Linear Motion Processing**
 - Assumes images are locally linear
 - Translate by *changing intensities*

- **Phase-Based Motion Processing**
 - Represents images as collection of local sinusoids
 - Translate by *shifting phase*
Linear vs. Phase-Based Motion Processing

Source

Linear SIGGRAPH’12

Phase-based SIGGRAPH’13
Phase over Time

Input

Wavelets

Phase over Time

Intensity

Space(x)

Intensity

Space(x)

Intensity

Space(x)

Time (t)

Radians

Time (t)

Radians
Phase over Time

- Input
- Phase over Time
- Wavelets
- Motion-magnified

Intensity

Space(x)

Radians

Time (t)
2D Complex Steerable Pyramid

Filter Bank

Idealized Transfer Functions

FFT

Scale

Orientation

Frequency (ω_y)

Frequency (ω_x)

Real

Imag

Scale 1

Orientation 1

Orientation 2

Scale 2

Orientation 1

Orientation 2

Highpass Residual

Lowpass Residual

Residual
Phase over Time

Filter Bank

Scale 1
- Real
- Orientation 1
- Orientation 2
- Imag

Scale 2
- Real
- Orientation 1
- Orientation 2
- Imag

Amplitude
Phase
Sub-bands

Phase over time

Temporal Filtering
Bandpassed Phase over time

Time (s)
New Phase-Based Pipeline

Filter Bank

Amplitude Phase

Bandpassed Phase

Temporal Filtering

Reconstruction

Complex steerable pyramid [Simoncelli et al. 1992]

Temporal filtering on phases
Improvement #1: Less Noise

Source (IID Noise, std=0.1)

Linear [Wu et al. 2012] (x50) Noise amplified

Phase-based (x50) Noise translated
Improvement #2: More Amplification

Amplification factor $\alpha = 0.0, \delta = 0.1 \leftarrow$ Motion in the sequence

Range of linear method:

Range of phase-based method:

4 times the amplification!
Limits of Phase Based Magnification

- Local phase can move image features, but only within the filter window
Comparison with [Wu et al. 2012]
Eye Movements

Source (500FPS)
Expressions

Source

Low frequency motions

Mid-range frequency motions
Ground Truth Validation

- Induce motion (with hammer)
- Record with accelerometer
Ground Truth Validation
Motion Attenuation

Sequence courtesy Vimeo user Vincent Laforet
Car Engine
Car Engine

22Hz Magnified
Car Engine
Car Engine

22Hz Magnified
Neck Skin Vibrations

Source (2 KHz)
Fundamental frequency: ~100Hz
Discussion of pixelwise phase magnification approach

- **Good:**
 - Does not require explicit motion estimation
 - Produces more direct translations (instead of perceived motion)
 - Does not amplify noise

- **Bad:**
 - Limited in range of amplification (compared to pointwise approach)
 - May have difficulty with non-periodic motion and large motions
Non-periodic Motions and Large Motions

Source (300 FPS) Motion Magnification x50 Motion Magnification x50
Large Motions Unmagnified

Non-periodic motion
The Visual Microphone: Passive Recovery of Sound from Video

Abe Davis Michael Rubinstein Neal Wadhwa
Gautham Mysore Fredo Durand William T. Freeman

(slides adopted from Siggraph presentation)
Remote Sound Recovery
Sound and Motion

Source: mediacollege.com
The Visual Microphone

Input

Air pressure (Pa)

Object response (A)

Camera (Projection)

Object motion (mm disp.)

Video (pixels)

Processing (B)

Recovered Signal (~Pa)

Object response (A)

Frequency

RMS Displacement

Video

Camera (Projection)

Processing (B)
Processing

- Extract local motion signals
- Average and Align
- Post-process
Some materials are better microphones than others

Air pressure (Pa) → Object response (A) → Object motion (mm disp.)

(c) Frequency responses
Sound Recovered from Video

Source sound in the room

Waveform

Spectrogram

Recovered sound

2200Hz video
Sound Recovered from Video

Source sound in the room

Waveform

Recovered sound

Spectrogram

2200Hz video
Sound Recovered from Video

Source sound in the room

Waveform

Spectrogram

Recovered sound

(smaller patch on the chip bag)

20 kHz video
High speed video
(actual video playing here)
Automatic Identification of Recovered Audio

Sound Recovered From Video of Earbuds
Rolling Shutter

https://www.flickr.com/photos/sorenraigsdale/3904937619/
http://www.flickr.com/photos/boo66/5730668979/
Rolling Shutter

Image of vibrating object projected on sensor

Image read from rolling shutter sensor

Motion and artifacts exaggerated here for illustration
Rolling Shutter

Image of vibrating object projected on sensor

Image read from rolling shutter sensor

Motion and artifacts exaggerated here for illustration
Rolling Shutter

Input video (60 fps)

Recovered Sound
Rolling Shutter

Input video (60 fps)

Recovered Sound

400Hz!
Summary

• Several ways to magnify motion
 – Directly measure and exaggerate point motions
 – Amplify intensity changes after temporal filtering (creating apparent motion)
 – Amplify local phase variations after temporal filtering

• Micro-motion estimates can be used to measure sound
Next week

• Final class
 – A few examples of cutting edge applications, inc.
 deep network based approaches
 – Where to learn more
 – Course feedback (important for me)