Image-based Lighting

Computational Photography

Derek Hoiem, University of Illinois

Next week

- Derek away for ICCV (Venice)
- Zhizhong and Aditya will teach and hold office hours, etc.
- Joe is away this week and next

Next two classes

Today

- Start on ray tracing, environment maps, and relighting 3D objects (project 4 topics)

Thursday

- More HDR, light probes, etc.

Project 4

How to render an object inserted into an image?

What's wrong with the teapot?

Relighting is important!

- http://smashinghub.com/8-of-the-most-epic-government-photoshop-fails-ever.htm
- http://petapixel.com/2013/10/13/another-north-korean-photoshop-fail/

How to render an object inserted into an image?

Traditional graphics way

- Manually model BRDFs of all room surfaces
- Manually model radiance of lights
- Do ray tracing to relight object, shadows, etc.

How to render an object inserted into an image?

Image-based lighting

- Capture incoming light with a "light probe"
- Model local scene
- Ray trace, but replace distant scene with info from light probe

(c) Constructing the light-based model

(d) Computing the global illumination solution

Key ideas for Image-based Lighting

- Environment maps: tell what light is entering at each angle within some shell

Key ideas for Image-based Lighting

- Light probes: a way of capturing environment maps in real scenes

Key ideas for Image-based Lighting

- Capturing HDR images: needed so that light probes capture full range of radiance

Key ideas for Image-based Lighting

- Relighting: environment map acts as light source, substituting for distant scene

Today

- Ray tracing
- Capturing environment maps

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection
light source

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering

A photon's life choices

- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
light source

A photon's life choices

- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering

- Phosphorescence
- Interreflection

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering

- Phosphorescence
- Interreflection

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering

- Phosphorescence
- Interreflection

A photon's life choices

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Where are the light sources are in this room?

http://www.flickr.com/photos/chrisdonbavand/493707413/sizes/z/in/photostream/

Rendering Equation

Rendering a scene with ray tracing

Ray tracing: basics

Ray casting

- Store colors of surfaces, cast out rays, see what colors each ray hits

Wolfenstein 3D (1992)

Ray tracing: fast approximation

Upon hitting a surface

- Cast reflection/refraction ray to determine reflected or refracted surface
- Cast shadow ray: go towards light and see if an object is in the way

Ray tracing: interreflections

- Reflect light N times before heading to light source

$N=16$

Ray tracing

- Conceptually simple but hard to do fast
- Full solution requires tracing millions of rays for many inter-reflections
- Design choices
- Ray paths: Light to camera vs. camera to light?
- How many samples per pixel (avoid aliasing)?
- How to sample diffuse reflections?
- How many inter-reflections to allow?
- Deal with subsurface scattering, etc?

Environment Maps

- The environment map may take various forms:
- Cubic mapping
- Spherical mapping
- other
- Describes the shape of the surface on which the map "resides"
- Determines how the map is generated and how it is indexed

Cubic Map Example

Cubic Mapping

- The map resides on the surfaces of a cube around the object
- Typically, align the faces of the cube with the coordinate axes
- To generate the map:
- For each face of the cube, render the world from the center of the object with the cube face as the image plane
- Rendering can be arbitrarily complex (it's off-line)
- To use the map:
- Index the R ray into the correct cube face
- Compute texture coordinates

Spherical Map Example

Sphere mapping

- Map lives on a sphere
- To generate the map:
- Render a spherical panorama from the designed center point
- Rendering with environment map:
- Use the orientation of the R ray to index directly into the sphere

What approximations are made?

- The map should contain a view of the world with the point of interest on the object as the Center of Projection
- We can't store a separate map for each point, so one map is used with the COP at the center of the object
- Introduces distortions in the reflection, but we usually don't notice
- Distortions are minimized for a small object in a large room
- The object will not reflect itself (based on the environment map)

Rendering with environment maps and local models

Storing spherical environment maps

Angular mapped

Spherical
Equirectangular LatLong Latitude/Longitude

Vertical Cross
Cubic (veross)

SkyDome Spherical

Equirectangular (latitude-longitude) projection

Equirectangular (latitude-longitude) projection

How to capture light in real scenes?

From Flight of the Navigator

How to capture light in real scenes?

Real environment maps

- We can use photographs to capture environment maps
- The first use of panoramic mosaics
- Fisheye lens
- Mirrored balls (light probes)

Mirrored Sphere

Mirror balls for image-based lighting

Mirror balls for image-based lighting

Mirror balls for image-based lighting

0.34
=> 59\%
Reflective

Calibratine Mirrored Sphere Reflectivity

Spherical map domain transformations

- Many rendering programs only accept one format (mirror ball, equirectangular, cube map, etc)
- E.g. Blender only accepts equirectangular maps
- How to convert mirror ball to equirectangular?

Mirror ball -> equirectangular

Mirror ball -> equirectangular

- Spherical coordinates
- Convert the light directions incident to the ball into spherical coordinates (phi, theta)
- Map from mirror ball phi, theta to equirectangular phi, theta
for $\mathrm{i}=1: \mathrm{d}$
F = TriScatteredlnterp(phi_ball, theta_ball, mirrorball(:,;,i)); latlon(:,.,,i) $=F$ (phi_latlon, theta_latlon);
end

Mirror ball -> equirectangular

Mirror ball

Normals

Reflection vectors

Phi/theta of reflection vecs

Equirectangular

Phi/theta equirectangular domain

One small snag

- How do we deal with light sources? Sun, lights, etc?
- They are much, much brighter than the rest of the environment

Problem: Dynamic Range

Problem: Dynamic Range

Long Exposure

Short Exposure

Varying Exposure

Camera is not a photometer!

- Limited dynamic range
\Rightarrow Perhaps use multiple exposures?
- Unknown, nonlinear response
\Rightarrow Not possible to convert pixel values to radiance
- Solution:
- Recover response curve from multiple exposures, then reconstruct the radiance map

Next class

- How to capture HDR image using "bracketing"
- How to relight an object from an environment map

