Single-view Metrology and Cameras

Computational Photography
Derek Hoiem, University of Illinois
Project 2 Results

• Incomplete list of great project pages
 – **Haohang Huang**: Best presented project; nice iterative results and demonstration, animations for hole filling
 – **Xiaotian Le**: Runner Up Project: Cool Sliding Window to demonstrate difference in textures (most liked)
 – **Xiaoyan Wang**: Runner Up Project: Cool QR Code Texture Transfer and Toast results
 – **Kartik Agarwal**: Overall nice project
 – **Ho Yin Au**: Nice seam finding results
 – **Yuanzhe Rijn Bian**: Nice Einstein Toast Result
 – **Yundi Fei**: Nice seam finding results
 – **Zih Siou Hung**: Nice Van Gogh texture transfer onto a cat
 – **Brendan Wilson (synthesized pattern)**: Very unique texture patterns that were explored
 – **Zexuan Zhong**: Best hole filling exploration
Texture synthesis
Texture synthesis
Texture transfer

Zih Siou Hung
Hole filling

Zexuan Zhong
Review: Pinhole Camera

Camera Center \((t_x, t_y, t_z)\)

Optical Center \((u_0, v_0)\)

\[
p = \begin{bmatrix} u \\ v \end{bmatrix}
\]

\[
\mathbf{P} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}
\]
\[X = K[R \ t] X \rightarrow_w \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix} = \begin{bmatrix} f & s & u_0 \\ 0 & \alpha f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \]
Take-home questions from last week

• Suppose the camera axis is in the direction of (x=0, y=0, z=1) in its own coordinate system. What is the camera axis in world coordinates given the extrinsic parameters R, t?

• Suppose a camera at height $y=h$ ($x=0, z=0$) observes a point at (u,v) known to be on the ground ($y=0$). Assume R is identity. What is the 3D position of the point in terms of f, u_0, v_0?
Review: Vanishing Points

Vanishing line

Vertical vanishing point (at infinity)

Vanishing point

Vanishing point

Slide from Efros, Photo from Criminisi
Perspective and weak perspective
This class

• How can we calibrate the camera?
• How can we measure the size of objects in the world from an image?
• What about other camera properties: focal length, field of view, depth of field, aperture, f-number?
• How to do “focus stacking” to get a sharp picture of a nearby object
• How the “vertigo effect” works
How to calibrate the camera?

\[x = K \begin{bmatrix} R & t \end{bmatrix} X \]

\[
\begin{bmatrix}
wu \\
wv \\
w
\end{bmatrix}
= \begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]
Calibrating the Camera

Method 1: Use an object (calibration grid) with known geometry

– Correspond image points to 3d points
– Get least squares solution (or non-linear solution)

\[
\begin{bmatrix}
wu \\
vw \\
w
\end{bmatrix} =
\begin{bmatrix}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34}
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
\]
Calibrating the Camera

Method 2: Use vanishing points

– Find vanishing points corresponding to orthogonal directions
Take-home question (for later)

Suppose you have estimated finite three vanishing points corresponding to orthogonal directions:

1) How to solve for intrinsic matrix? (assume K has three parameters)
 - The transpose of the rotation matrix is its inverse
 - Use the fact that the 3D directions are orthogonal

2) How to recover the rotation matrix that is aligned with the 3D axes defined by these points?
 - In homogeneous coordinates, 3d point at infinity is \((X, Y, Z, 0)\)
How can we measure the size of 3D objects from an image?
Perspective cues
Perspective cues
Perspective cues
Ames Room
Comparing heights

Vanishing Point
Measuring height

Camera height

5.4
3.3
2.8
Two views of a scene

- Parallel to ground
- Camera center
- Image plane
- Ground
- Camera looks down
- Image horizon
- Slight foreshortening due to camera angle
Which is higher – the camera or the parachute?
Measuring height without a giant ruler

Compute Z from image measurements
 - Need a reference object
The cross ratio

A Projective Invariant

- Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

\[\frac{\|P_3 - P_1\| \|P_4 - P_2\|}{\|P_3 - P_2\| \|P_4 - P_1\|} \]

Can permute the point ordering

- \(4! = 24\) different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry
Measuring height

\[\frac{\|B - T\|}{\|B - R\|} \frac{\|\infty - R\|}{\|\infty - T\|} = \frac{H}{R} \]

scene cross ratio

\[\frac{\|b - t\|}{\|b - r\|} \frac{\|v_z - r\|}{\|v_z - t\|} = \frac{H}{R} \]

image cross ratio

scene points represented as \(P = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \)

image points as \(p = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \)
Measuring height

vanishing line (horizon)

\[v \approx (b \times b_0) \times (v_x \times v_y) \]

\[t \approx (v \times t_0) \times (r \times b) \]

\[\frac{\|t - b\|}{\|r - b\|} \frac{\|v_z - r\|}{\|v_z - t\|} \]

image cross ratio
What if the point on the ground plane b_0 is not known?

- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above
Take-home question

Assume that the man is 6 ft tall

– What is the height of the front of the building?
– What is the height of the camera?
Beyond the pinhole: What about focus, aperture, DOF, FOV, etc?

Camera Center \((t_x, t_y, t_z)\)

Optical Center \((u_0, v_0)\)

\[\mathbf{p} = \begin{bmatrix} u \\ v \end{bmatrix} \]

\[\mathbf{P} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \]
Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are “in focus”
 - other points project to a “circle of confusion” in the image
 - Changing the shape of the lens changes this distance
A lens focuses parallel rays onto a single focal point
- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays
The eye

- **The human eye is a camera**
 - **Iris** - colored annulus with radial muscles
 - **Pupil** - the hole (aperture) whose size is controlled by the iris
Focus with lenses

Distance to object S_1
Distance to sensor S_2

Lens focal length

Equation for objects in focus:

$$\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}$$

The aperture and depth of field

Changing the aperture size or focusing distance affects depth of field

\[f \text{-number (f/#)} = \frac{\text{focal_length}}{\text{aperture_diameter}} \] (e.g., f/16 means that the focal length is 16 times the diameter)

When you change the f-number, you are changing the aperture

Varying the aperture

Large aperture = small DOF

Small aperture = large DOF
Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects
Shrinking the aperture

2 mm

1 mm

0.6 mm

0.35 mm

0.15 mm

0.07 mm
The Photographer’s Great Compromise

<table>
<thead>
<tr>
<th>What we want</th>
<th>How we get it</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>More spatial resolution</td>
<td>Increase focal length</td>
<td>Light, FOV</td>
</tr>
<tr>
<td></td>
<td>Decrease focal length</td>
<td>DOF</td>
</tr>
<tr>
<td>Broader field of view</td>
<td>Decrease aperture</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>Increase aperture</td>
<td>DOF</td>
</tr>
<tr>
<td>More depth of field</td>
<td>Shorten exposure</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>Lengthen exposure</td>
<td>Temporal Res</td>
</tr>
<tr>
<td>More temporal resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>More light</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Difficulty in macro (close-up) photography

- For close objects, we have a small relative DOF
- Can only shrink aperture so far

How to get both bugs in focus?
Solution: Focus stacking

1. Take pictures with varying focal length

Example from
http://www.wonderfulphotos.com/articles/macro/focus_stacking/
Solution: Focus stacking

1. Take pictures with varying focal length
2. Combine
Focus stacking

http://www.wonderfulphotos.com/articles/macro/focus_stacking/
Focus stacking

How to combine?
Web answer: With software (Photoshop, CombineZM)

How to do it automatically?
Focus stacking

How to combine?

1. Align images (e.g., using corresponding points)

2. Two ideas
 a) Mask regions by hand and combine with pyramid blend
 b) Gradient domain fusion (mixed gradient) without masking

Automatic solution would make an interesting final project

Recommended Reading:
http://www.digital-photography-school.com/an-introduction-to-focus-stacking
http://www.zen20934.zen.co.uk/photography/Workflow.htm#Focus%20Stacking
Relation between field of view and focal length

Field of view (angle width) \[f_{ov} = 2 \tan^{-1} \frac{d}{2f} \]

Film/Sensor Width

Focal length
Dolly Zoom or “Vertigo Effect”

http://www.youtube.com/watch?v=NB4bikrNzMk

How is this done?

Zoom in while moving away

http://en.wikipedia.org/wiki/Focal_length
Dolly zoom (or “Vertigo effect”)

Field of view (angle width)

$$fov = 2 \tan^{-1} \frac{d}{2f}$$

Film/Sensor Width

Focal length

width of object

$$2 \tan \frac{fov}{2} = \frac{width}{\text{distance}}$$

Distance between object and camera
Things to remember

- Can calibrate using grid or VP
- Can measure relative sizes using VP
- Effects of focal length, aperture + tricks
Next class

• Go over take-home questions from today
• Single-view 3D Reconstruction