
CS 445 - Final Project: Interactive Image-Editing Program

Ching-Yu, Liu Yao-Tsung, Hsu Yu-Ching, Huang

Introduction

 The main purpose of the final project is to create an interactive program, which

provides users to apply several functions. Some functions are we have learned in this

semester while others are useful functions when a user wants to edit an image. In

addition, the program has an advanced function “hole filling”, which is an extension

from previous project.

Our Interface and Approach

 At first, the user can choose a function in the left-side bar. After choosing the

function and clicking enter, the right-side bar would show corresponding workspace,

where the user can key in the parameters for the function.

 After clicking “Run”, the program will start to run and the result will be displayed

in the middle after a while. The user is able to save the result as jpg.

 This is the main part of our projects, and it is also the most time-consuming one.

We spent much time realizing how to create a GUI tool on Matlab. During the

process, we learned how to create GUI element and set it on the program. Once we

added a new element, Matlab will generate “create function” and “callback function”

automatically, and we were able to write what to do in the function. We also had to

understand how parameters are passed from GUI to the functions. If we need to

change the value of GUI element, we can use handles of that element to "get" the

value or "set" the value.

As there is variety of functions, we had to set up the limitation and scale of the

parameters for each function to avoid the program crashing. For example, we need

to display the value whenever the bar of the slider changes, or when the value from

the slider is not an integer, we might need to reset the value and store it back to the

slider.

Functions

1. Hole Filling: This is another achievement in our project.

We implemented this function by referencing the algorithm described in

Region Filling and Object Removal by Exemplar-Based Image Inpainting by

Criminsi et al.

There two key points about filling problem. The first is the order that we

should fill the hole region. We choose the target point on the boundary by

computing 𝑃(𝑝) = 𝐶(𝑝)𝐷(𝑝), where 𝑝 is the points on the boundary.

𝐶(𝑝) is the confidence value, the greater confidence, the point should be

filled earlier. 𝐷(𝑝) encourages our algorithm to fill high gradient regions

first. Hence, the point with highest 𝑃(𝑝) means the highest priority to

filling.

After choosing the point, we use this point as the center to decide a patch

to fill. (the patch size is given by the user)

 The second is to find the fill front. We divided the image into four parts.

Then calculate the exemplar patch, which is the fill front, from these four

images by finding the minimum SSD.

The steps we used.

1. User input image and select a region to cut.

2. Get the mask for the hole and boundary.

3. Choose the point p on the boundary that has the highest 𝑃(𝑝).

4. Find the fill front to fill the patch which centered at p.

5. Replace the patch by the fill front and update mask and boundary

6. Repeat step 3~5 until the hole is filled.

Actually we encountered two main problems.

The first is computing 𝐷(𝑝). As the paper said, 𝐷(𝑝) equal the inner

product of the norm vector and the isophote at point p. However, isophote

is what we didn’t learn before. Finally we solve this problem by figuring out

that Isophote_intensity = √fx2 + fy2, Isophote _theta = cot−1 fy

fx
 , where fx,

fy is gradient in x and y direction . So Isophote =

[Isophoteintensity ∗ cos(Isophote _theta) , Isophoteintensity ∗

sin(Isophote _theta)]

The second is that even we used SSD to find the most similar fill front to

the patch that needed to fill, it is still not always good to every input images.

We guess the reason is that we used the method which is implemented in

project2, but the situation is a little bit different in hole filling problem.

However, we didn’t modify the method since we can still get some good

results with the current method.

Circle part is where has been filled after cutting off from the original image.

2. Hybrid Image: Hybrid two images by providing corresponding cut-off value.

3. Contrast Enhancement: Make the image more vivid by enhancing the

contrast.

4. Color Shift: Make the color of image more red, yellow, blue or green.

5. Texture Transfer: Giving an object, the appearance of having the same

texture as a sample while preserving its basic shape.

6. Panorama: Creating a panorama by providing 5 images.

7. Mosaics: Pixelate the image.

8. Motion Blur: Make the effect of motion blur.

9. Blur: Blurring the image.

10. Cut and Blend: Cut a part of image and paste it on the other one.

