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Abstract

Traffic sensing is important for traffic researchers, but
there is limited infrastructure systems related to it. This
project proposed a robust and fast computer vision based
traffic sensing approach. Static cameras were installed on
the sidewalk and captured the side view of vehicles. The de-
tection algorithm is based on HOG features and is trained
with an SVM. Combined with fast motion detection and
tracking algorithms, the approach is able to achieve good
vehicle counting accuracy with fast computation.

1. Introduction

In the United States, Federal Highway Administration
estimates that pre-planned special events are responsible for
93187 million hours of traffic delay annually, with direct
costs ranging between $1.7 and $3.4 billion [2]. Data ob-
tained traffic counting can be used to efficiently route traffic.
Traffic count results can also be used in traffic signal phase
design, leading to optimum time schedule for traffic signals
and reduced traffic congestion. However, traffic sensing in-
frastructure is very limited in most urban infrastructure sys-
tems.

Currently, most researchers collect data from GPS data
or personal navigation devices. Recently, a smartphone
based turning movement counter called TrafficTurk is de-
ployed for wide applications [2]. However, it requires in-
tensive manual efforts and costs.

To reduce manual counting efforts and human errors, we
developed a computer vision based vehicle counting system
that is based on a robust and fast side view vehicle detection
algorithm. This algorithm is a hybrid approach by combin-
ing machine learning based object detection and fast motion
detection.

2. Literature Review
Literature review was mainly focused on two areas: cur-

rent practices of traffic sensing, and computer vision-based
systems that are being developed for traffic sensing.
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2.1. Current Traffic Sensing Practices

Accurate counts of moving vehicles is the basis of traffic
analysis. It provides necessary data for calculating traffic
flow in a certain time slot so that the result can be utilized
as a reference to predict the future traffic volume changes.
Based on the analysis, one can further evaluate traffic im-
pacts with regards to various traffic control measures, ge-
ometric modifications, or maintenance practices. To carry
out such kind of analysis, one needs to either manually, or
with the help of various measuring approaches, track the
vehicles path through streets from enter to exit.

For manual count of turning movement volumes, data
collectors face two specific difficulties as they are conduct-
ing field observations. The first one would be the fact that
it requires the data collectors to observe both the entry and
exit legs simultaneously, but distances between the two are
typically too long to check in a short period. The next chal-
lenge is that multiple vehicles run through a traffic intersec-
tion concurrently will make the collectors get lost during
the tracing, or they can simply not trace several moving ve-
hicles together. This will lead to miscounting and wrong
statistic data of the turning movement [4]].

In a recent project conducted by URS, both manual turn-
ing movement counts, which were performed by techni-
cians in the field, and automated turning movement counts,
using video collection unit (VCU) developed by Miovision
Technologies, are implemented for a TMC task [7]. The
VCU is a digital camera recording all vehicle and pedes-
trian passes, and the recording is further processed to glean
the two passing volume counts. In this project, the manual
turning movement gathering process is said to be a labor
intensive work. For the manual count, each spot for the
field data collection is visited in advance of the work so as
to confirm the feasibility for a manual counting. It is also
required to get approval of various organizations, only for
getting access to good views of the intersections. The VCU
method requires the camera being mounted on an existing
pole, which could be either utility poles, or wood posts.

Nearly 700 hours are used in total for the VCU technol-
ogy in that project. This project, along with the counting
outcomes, verified that the VCU data collection method is
sufficiently accurate. It is also capable to count passing ob-
jects during an extended period of time at remote locations,



saving substantial time and cost for this project. Besides the
evident advantage regarding convenience, it only needs one
technician to deploy multiple VCU units at many intersec-
tion in a relatively short time. Therefore, use of VCU re-
duces labor cost significantly. According to the report from
URS, this new approach has an accuracy that is higher man-
ual counting for the TMC analysis [7].

2.2. Current computer vision based traffic monitor-
ing systems

Peiris and Sonnadara [[6] used a single digital camera to
extract various traffic parameters, including vehicle count,
density, and type at a three-way junction. To minimize the
occlusion between vehicles and cover the three junction, the
camera was placed high on a building. This method could
overcome the limitation of most previous work that the cam-
era is required to be placed in the way of vehicles mov-
ing towards the camera. After gray-scaling and noise fil-
tering the images are converted from the video clip, frame
by frame differences and background subtraction are used
to identify vehicles. A morphological operation is used to
build a bounding box corresponding to a identified mov-
ing vehicle. Blob tracking is performed using euclidean
distance of the vehicles between two consecutive frames.
However, vehicles can only be counted when a vehicle en-
ters the selected region from the recorded video, which is
shown in Figure [Tl In addition, motion detection cannot
always guarantee detected objects are vehicles.

Figure 1: Selected regions for vehicle tracking [6].

Messelodi et al. [3] also proposed a real-time vision
system to detect and classify vehicles at urban road inter-
sections. An updated Kalman filter method and a feature-
based tracking method were adopted. Relatively less ef-
fort was spent focusing on monitoring intersections of ur-
ban areas since compared to highways, intersections may
incorporate problems including highly variable structure of
intersections, the multiple flows of vehicles with different
turning movement, and vehicles stopping at traffic lights.
Although the used surveillance cameras can be remotely

controlled to pan, tilt, or zoom, the boundary of the selected
area that is monitored is required to identify through a set
of points which defines the entry and exit gates of interest
for the turning movements detection.

3. Methodology

The following steps were taken to achieve the intended
results.

1. Data Acquisition. A video of a street segment is cap-
tured on the ground level. This is to capture the side
view of each passing vehicle.

2. HOG-SVM based vehicle detector. To train a vehicle
detector, Histogram of Orientated Gradients (HOG) is
deployed as feature detector. Support Vector Machines
(SVMs) is used to train a classifier that is based on
HOG features. The vehicle is then tested with same-
scale and multi-scale scenarios.

3. Vehicle Detection. Moving objects were detected
via performing background subtraction, morphologi-
cal closing, rectangle fitting, and filtering. Trained ve-
hicle detector is then used to verify whether each of the
moving objects is a vehicle or not.

4. Vehicle Tracking. The tracking of vehicles was ac-
complished by using Kalman filtering. Each vehicle
was given a label and its properties were recorded. Ef-
forts were made to ensure that vehicles that become
occluded (i.e. vehicles traveling in opposite directions)
would not be re-assigned to a new label in later stage.

5. Vehicle Counting. This is based on vehicle tracking
results. The algorithm keeps track of the number of
vehicles that have currenty entered the frame. When-
ever a new vehicle comes, it would be assigned to an
incremented label.

3.1. Data Acquisition

A video clip on a street segment was captured in 30
frames per second (FPS). A digital camera was installed on
a tripod to stay static while capturing. The video duration
is 7:08 min. It is located on 1st street between Kirby and St
Marys. This is a two-way street and there are pedestrians
and motorcycles. Also it’s flurry and drizzling weather con-
ditions which brings slight camera shake and environment
noises. A sample frame from the recorded video is shown
in Figure[2]

3.2. HOG-SVM based Vehicle Detector

The dataset that is used for training in this project is
from UIUC Image Database for Car Detection (https:
//cogcomp.cs.illinois.edu/Data/Car/). This
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Figure 2: Sample frame captured on 1st street.

dataset provides 550 positive images (side views of vehi-
cles), 500 negative images (objects or scenes that are not
side views of vehicles), 170 testing images with same scale,
and 108 images with different scales. Samples of training
dataset are shown in Figure[3]

(b) Sample negative training image

Figure 3: Sample training images

Since images are ready, we need to figure out what fea-
tures we can extract to feed into Machine learning algo-
rithms. Histograms of Oriented Gradients [3] is a widely-
used feature descriptor used in computer vision for object
detection. It counts occurrences of gradient orientation in
localized portions of an image. It transforms any given im-
age into a one-dimension vector. For our implementation,
we deployed OpenCV [1]] built-in HOG function and the
vector length we have is 7656. Note that HOG extracts fea-
tures from grayscale images.

Now we have the features of training images, we can use
feed features into SVM to train a classifier. As mentioned

earlier, the feature length is 7656 and thus the trained SVM
is of dimension of 7656. We deployed SVMs from Scikit
Learn library, which is a Python Machine Learning Library.

To test how this classifier works, we apply the HOG-
SVM detector into two testing datasets. The first dataset
contains 170 images, of which the vehicles are approxi-
mately the same size with the training images. The second
dataset contains 108 images, of which the vehicles are in
different scales compared with the training images (either
smaller or bigger).

For first dataset, a sliding window algorithm would be
sufficient. The basic idea is to iterate through the whole
image with a window size which is the same with training
data, and determine one by one whether it is a vehicle or not.
As shown in Figure [5a] two vehicles are correctly detected.
Overall, the HOG-SVM detector achieves a 92% accuracy
with the same-scale dataset.

For second dataset, a sliding window algorithm would
not be enough. Given the vehicle in unknown size, we
cannot simply detect with only one scale. Consequently,
a multi-scale sliding window algorithm is applied. More
specifically, each image is scaled to multiple sizes and each
of them would apply sliding window algorithm. Note that
the sliding window would remain the same size despite of
resized image size. This algorithm is illustrated in Figure [}
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Figure 4: Multi-scale sliding window algorithm illustration



This is much slower than the first dataset, but this is what
we should use for the real-world dataset given unknown ve-
hicle sizes. Overall the HOG-SVM detector achieves a 85%
accuracy with the multi-scale dataset. One sample result is
shown in Figure 5b

(b) Sample multi-scale test image

Figure 5: Sample multi-scale test image results

3.3. Vehicle Detection

Although we have trained a HOG-SVM vehicle detec-
tor, we cannot directly apply it to the whole video frame
by frame because of the inefficiency. Since our goal is to
achieve processing in real-time, we need to combine Ma-
chine Learning based detection with fast motion detection.

Vehicle detection is processed frame by frame of the
video, i.e. vehicle detection results are independent as of
each frame. To help illustrate the vehicle detection process,
one sample frame is included in Figure [6] as well as all in-
termediate results of it in following subsections.

3.3.1 Background Subtraction

Background subtraction provides the very first step for vehi-
cle detection process. We deployed BGS Library [8] to ac-

Figure 6: Sample source frame.

complish this task. BGS is a OpenCV based library that pro-
vides more than 30 different background subtraction meth-
ods. After the evaluation of accuracy and computational
complexity, Frame Difference algorithm is selected. The
resulting frame after background subtraction is shown in

Figure[7]

Figure 7: Sample frame after background subtraction.

3.3.2 Morphological Closing

The result after background subtraction still requires im-
provements due to the voids inside detected regions. Also
there are lots of environment noises, e.g. moving leaves on
the tree blown by strong wind. A morphological closing
transformation was applied to fill in the voids to improve
accuracy. An OpenCV built-in function was used to accom-
plish this. A sample result is shown in Figure[§]

3.3.3 Fitting Rectangles

Bounding rectangles were drawn around the contours of the
detected regions. Due to the presence of noise, some of
the drawn rectangles needed to be filtered. Rectangles with
sizes that deviated too much from that of a regular vehicle



Figure 8: Sample frame after morphological closing.

were first excluded. An example of this procedure is shown
in Figure[9]

Figure 9: Minimum area rectangles that are fit to contours.

3.3.4 HOG-SVM Vehicle Detector

Instead of applying the HOG-SVM vehicle detector to the
whole image with multi-scale sliding window algorithm, it
only has to be applied to the much smaller potential vehi-
cle boxes passed by the above step. This is based on the
assumption that vehicles on the street are moving, so that
only moving objects are potentially vehicles. This step dra-
matically decreases the computational time of HOG-SVM
based vehicle detector.

For each of the bounding rectangles passed in from the
last step, HOG-SVM multi-scale sliding window algorithm
would be applied one by one, and determines whether it is
a vehicle or not. In this example shown in Figure [9] two
boxes that pass in are both vehicles, detected as shown in
Figure[10]

Comparing Figure [I0] with Figure [6] the detected vehi-
cles can be validated.

(a) Detected vehicle 1

(b) Detected vehicle 2

Figure 10: Detected vehicles

3.4. Vehicle Tracking

There are two tracking scenarios. Firstly, tracking is by
Kalman-filter predictions. This is based on the assumption
that detections are correct. In other words, detected vehicles
are the actual vehicles in the current frame. Although the
whole detection process is trying to accomplish this goal,
correctness cannot always be guaranteed. Missing detec-
tion due to occlusion is very likely to happen. This leads
to the second tracking scenarios, where tracking is trying to
correct detection. There are several assumptions made, but
parameters are not tuned for specific videos for generality.

3.4.1 Kalman-Filter Based Tracking

Kalman-filter based tracking was applied to the detected re-
gions in Figure [0] Based on the true centers of a bounding
rectangle, which is the current location of a vehicle, Kalman
filtering predicts a position for where the vehicle is most
likely going to be. The position of each bounding box in
the next frame was then compared against each predicted
position so vehicles that had already been labeled would
maintain their label and new vehicles that had just entered
frame would receive a new label.

The process is explained in detail as follows. The very
first frame of the video is treated differently from the re-
maining frames of the video. Nothing has been labeled
prior to the first frame, thus the frame requires initializa-
tion. Using the first two frames, potential vehicles appeared
during the first frame are detected and labeled. All of the
subsequent frames then attempts to label vehicles based on
frames that immediately precede them. Existing vehicles
should maintain their labels and vehicles that had just en-
tered the frame should receive new labels.

There are three possible labeling scenarios. The first sce-
nario, also the most straightforward, is when the number of
vehicles in the preceding frame is equal to the number of
detection within the current frame. The Euclidean distances
of the center points of the detected regions are calculated
between two consecutive frames. An example is shown in
Figure[I1] Detection 1-3 are regions that have just been de-
tected in the current frame, while Vehicle 1-3 are vehicles
that had been labeled from the preceding frame.

Shown in Figure [TTa] the minimum of the 9 calculated
Euclidean distances is found. The labeled vehicle and the



associated newly detected region are then believed to be the
same vehicle. Shown in Figure[TTb] the entire row and col-
umn can be eliminated. The procedure is repeated by find-
ing the next closest Euclidean distance to match labeled ve-
hicles with newly detected regions until only one possible
match remains. This is shown in Figure
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(a) Detected vehicles are pair-
ing by minimum Euclidean
distance.

(b) The associated vehicle and
detection are struck out after
pairing.
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(c) The remaining vehicle and
detection are paired.

Figure 11: Sample vehicle tracking procedure when de-
tected vehicles and existing vehicles share the same count.

The second scenario involves having more vehicles la-
beled in the previous frame than the number of regions de-
tected in the current frame. An example is shown in Figure
[12] The aforementioned procedure is applied to match up
the first 3 vehicles. Based on the where the remaining ve-
hicle was last detected in the previous frame, one of two
actions is taken. If the vehicle was last detected somewhere
in the middle of the intersection, the vehicle is potentially
stopping temporarily and its position is recorded. If in a
later frame a vehicle appears with the same position, track-
ing of the vehicle is resumed. The second action labels the
vehicle as having left the intersection, which is taken when
the previously labeled vehicle exits the frame of the video.

The third scenario, shown in Figure @ occurs when
there are more regions detected in the current frame than the
number of vehicles labeled in the preceding frame. Once
again, the previously described procedure is followed to as-
sociate newly detected regions with labeled vehicles. A new
label is assigned to the final remaining newly detected re-
gion.
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Figure 12: Sample tracking procedure for the second sce-
nario.
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Figure 13: Sample tracking procedure for the third scenario.

3.4.2 Tracking Corrects Detection

This mainly deals with the scenario where detection is not
correct, in particular, missing detection due to occlusion.
To deal with this scenario, a buffer zone of two frames is
allowed for each detected vehicle. That means, whenever
a vehicle is not matched with a detection, it is not deleted
until two frames later. There is advantages and disadvan-
tages by doing this. For the good part, this helps handle
occlusions. Vehicles travel in opposite directions can eas-
ily get occluded by each other. By retaining the vehicle for
two frames, we can expect they are still assigned with the
same label after occlusion. For the bad part, this delays the
deletion for vehicles that actually leave the scene.

3.4.3 Tracking Sample Result

The result of the tracking process is shown in Figure [T4]
The blue dot is the true center location while the green dot
is the predicted location by Kalman filter. By finding the
nearest prediction-true location pair in case of multiple ve-
hicle detection, correct labels are assigned.

4. Results[] & Discussion

The results of the project is shown in several aspects.
First, the detection robustness is discussed as of avoiding
false positives. Second, vehicle counting is compared be-

1Video demos are available atfhttps://goo.gl/LLaUj0
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Figure 14: Vehicles are tracked with their centered positions
using Kalman Filtering.

tween human-labeled and machine-labeled. Last but not the
least, computational complexity is evaluated on machines.

4.1. Detection Robustness

The introduction of HOG-SVM vehicle detector greatly
increases the robustness of vehicle detection. It helps to
avoid detecting moving objects that are not vehicles, as
shown in Figure [T3] In our observation, the proposed al-
gorithm is robust to, and not limited to pedestrians, motor-
cycles, bicycles, flurry weather and drizzling weather, etc.

(a) Running person is not detected while vehicle gets correctly
detected.

(b) Pedestrian is not

detected. (c) Motorcycle is not detected.

Figure 15: Detection robustness of our approach.

Elimination of false positives sometimes eliminate true
positives as well. Since the training dataset only contains
sedans and small SUVs, it does not have consistent detec-
tion results to trucks, which are popular in Midwest. This
problem can be solved by introducing trucks in positive
training dataset.

4.2. Counting Accuracy

In our testing video, the ground-truth (counted by group
members) count of traffic is 64 vehicles, while the algorithm
counts 67. This gives us a 95% counting accuracy.

As for error analysis, the extra counts are mostly due to
occlusion. Once occluded, detected vehicles that have al-
ready been assigned a label, is regarded as moving out of the
scene. After occlusion, the same vehicle might be detected
once again. However, in this case it would be regarded as a
new vehicle. This results in a situation where the same car
was counted twice. That explains why the algorithm counts
more than the ground-truth.

Although we try to handle this in the tracking algorithm,
it’s a trade-off of deleting vehicles that have actually left the
scene and deleting those who are temporarily occluded. We
allow only 2 frames of buffer zone to wait for any vehicle
to be detected once again to avoid re-assigning a new label.
However, that becomes a parameter tuning game and we did
not specifically tune for testing video.

4.3. Computational Time Evaluation

The system is capable of processing videos at an accel-
erated pace. The duration of the input video was 7 minutes
and 8 seconds. At a processing rate of 5 FPS, the system
took about 190 seconds to process the entire video on a stan-
dard computer laptop, which is only 44% of the video dura-
tion. The performance is expected to improve even further
if computers with better hardware are used for processing.

5. Conclusions

By analyzing recorded videos of traffic, the computer vi-
sion based monitoring system discussed here is capable of
automatically counting the number of vehicles that enter the
scene, with decent accuracy and fast computational time.

Currently, there does not exist any commercially avail-
able automated systems that are capable of monitoring traf-
fic with exceptional accuracy. The system developed pro-
vides many benefits compared to counting vehicles manu-
ally and other systems. The benefits include, but are not
limited to:

1. Robust detection. Currently most computer vision
traffic sensing systems rely on only motion detection,
which is not robust enough to complex road conditions
(pedestrians, bicycles, motorcycles, weather). Our ap-
proach contains a trained Machine Learning based ve-



hicle detector, which provides much more confidence
in identifying moving objects as vehicles.

2. Reduced cost. Counters are no longer required for
counting vehicles. The amount of savings varies with
the size of the project. The larger the project, the
greater the amount of savings.

3. Easier deployment. A static camera on ground level is
enough to capture videos that can be handled by our
approach.

Errors arose when the system attempts to detect vehicles
that were partially occluded. This error directly influenced
the accuracy of vehicle counting. Despite the presence of
the limitations, the system was able to produce good results
when analyzing the test data. The accuracy of the vehicle
counting capability was 95%.

The limitations of this approach is that the trained detec-
tor is only able to handle vehicle side views. Consequently,
this algorithm cannot be directly applied to traffic intersec-
tions, where different vehicle views would be present.
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