
Automatic Makeup and Facial Beauty Enhancement

Tianyuan Zhang, Mao-Chuang Yeh, Xingyu Xiang, and Xiaoxuan Gu

College of Engineering, University of Illinois at Urbana-Champaign

1 INTRODUCTION

As the increasing popularity of smart phone
among young people, we tend to record and share
our daily life on social media with selfies taken by
cell phone. This kind of social trend encourages the
creation and development of smart phone makeup
apps. Our project is inspired by one of the apps
called makeup plus which enables users to apply
the effect of eyeshadow, lipstick, and blush to a
portrait. Our objective is to understand the
methodology behind all these effects and simulate
it on laptop with the assistance of Matlab.

2 METHODOLOGY

2.1 Method I:

The main idea of our first method is to start with
key point detection of facial features. Then, an
appropriate sized box is automatically generated
according to the key points, and we cut these parts
out by segmentation techniques. Finally, we do
color shift or filtering with these parts and blend
them back to the original image.

Cascade Object Detector: For facial feature
detection, we first use a cascade object detector to
detect the outline of the face region based on
Viola–Jones Algorithm [4]. Cascade object detector
operates in 4 steps as follow: (i) Haar feature
selection, (ii) creating an integral image, (iii)
Adaboost training, (iv) Cascading Classifiers.

Figure 1: Left: Original image; Right: Detected region and points

Face Feature Localization: The output of cascade
object detector gives an approximate location and
scale of the face. Then, we want to locate all facial

features in the detected face region. Nine facial
features are located: the left and right corners of
each eye, the two nostrils and the tip of the nose,
and the left and right corners of the mouth. The
appearance of each facial feature is assumed
independent of the other features and is modeled
discriminatively by a feature/non-feature classifier.
For feature position searching, tree-structured
covariance is applied which increases the efficiency
of distance transform methods [2].

Figure 2: Detected facial features

K-Mean Segmentation: What is required in this
method: (i) L*a*b* color space, (2) K-means
clustering, (iii) Statistics and Machine Learning
Toolbox. K-Mean segmentation [citation] operates
in following steps:

Step 1: Using Imread to import image as usually,
for the convenience of the implementation, we
already cropped a square shape of the face. Of
course, the square is cropped from the image
based on the detected key points on the eyes.

Step 2: Having a shift from RGB Color Space into
L*a*b* Color Space (L: luminosity layer; a: red-
green axis; b : blue-yellow axis). In order to do this
shift: (i) the makecform and applycform functions
are used, (ii) using the Euclidean distance metric to
measure the difference of two colors.

Step 3: Using K-Means Clustering to Classify the
Colors in 'a*b*' Space. Specify the number of
clusters to be partitioned, such as “nColors = 4”.
Specify a distance metric to quantify how close two
objects are to each other. This is a way to separate
colors into different groups. Using “Kmeans”
function.

Step 4: Label Every Pixel in the Image Using the

Results from Kmeans. Kmeans returns an index
corresponding to a cluster. Every pixel will be
labeled with the index of cluster.

Step 5: Create Images Segment the original
Image by Color. After each pixel get the label, the
objects can be separated by color. For example, if
“nColors = 4 “ has been set, it will result in three
images.

Step 6: Segment the eyes/ mouth into separate
image. The index of the cluster containing some
color’s objects should be arbitrarily decided, for
Kmeans will not return the same cluster_idx value
every time.

Figure 3: K-Mean segmentation process

Although the segmentation of eyes seem good,
the output of the mouth cannot make us satisfied,
for the mouth has an area which reflects the light
and the color of that areas is similar with the skin.
As the consequence, the lips and the surrounding
skin cannot be separated perfectly. The following
picture is the consequence, and we decide to adapt
other strategy to do the implementation:

Figure 4: K-Mean segmentation applied to mouth

Grabcut Segmentation:(alternative segmentation
method) Grabcut [3] is an algorithm was needed for
foreground extraction with minimal user interaction.
Grabcut segmentation can be operated in the
following steps. Step 1: Define graph – usually 4-
connected or 8-connected. Step 2: Set weights to
foreground/background – Color histogram or
mixture of Gaussians for background and
foreground . Step 3: Set weights for edges between
pixels. Step 4: Apply min-cut/max-flow algorithm.
Step 5: Return to step 2, using current labels to
compute foreground, background models.

Figure 5: Grabcut segmentation process.

2.2 Method II:

The weakness of method I as discussed above is
apparent. Using segmentation by Grab cut [3] or
clustering doesn’t result in very decent outcome of
the landmark feature. Even though the cropped
images are small enough that only contain the
preferable regions, segmentation procedures do
not perfectly cut out the wanted region of face
feature. This failure may due the nature of these
segmentation algorithms which depend mostly on
color gradient and edge. Yet for most of our wanted
features (lips, eyes), the separation between them
and the skin nearby do not have very sharp
gradient differences.

So we shift our focus to finding a more accurate
facial landmark detector that output more key
points for each facial feature. We found Chehra [1],
a very promising and robust facial detector that
produces 50 key points. Chehra is created base of
a Parallel Cascade of Linear Regression algorithm.
Below is a comparison of key points generation
using OpenCV face detector and Chehra:

Figure 6: Left: Cascade detector; Right: Chehra Detector

We take advantage of the Chehra key points
detection and apply blending and color shifting for
each facial features. We first generate masks by
the given points and a gaussian filter is applied to
each mask to eliminate edge effect. Especially for
eyeshadowing, we need to subtract the original
mask of the eye to preserved the color of eye itself.
Following figure show the mask of each feature:

Figure 7: Masks of mouth, eyes, and cheeks.

The final result is much better than using

segmentation and clustering. The output is robust
to face from different angle due to the performance
of the Chehra key points detection algorithm.
Following is the comparison of an image before
and after putting on makeup:

Figure 8: Left: Original image; Right: Final result

3 ENHANCEMENT

After completing the general makeup effect, we
would like to do some enhancement, such as
changing the shape of eyebrows. In our project, we
use morphing techniques to realize this function.
The morphing process operates in the following 3
steps:

Step 1: Define corresponding points and shapes:
First, we need to detect the key points of eyebrow;

The we have a eyebrow function to get a proper
shape according to the key points.

Step 2: Shift defined shapes:
In order to get the morphing image of the

eyebrow, another ‘shift’ function needs to be
established.

Step 3: Remap surrounding areas:
If we want the morphed eyebrow can fit the

original skin, the areas need to be modified to
adjust the new image. To be more specific , if you
have changed the shape of eyebrow, then the
upper and lower skin need to be remapped based
on a arbitrary ratio. Otherwise, the picture will look
like fake.

Step 4: In order to get a natural entire image, do
a triangular transformation on the end of eyebrow.

Here are the results of eyebrow morphing:

Figure 9: Left: Original image; Middle: Morphing effect 1;Right:

Morphing effect 2

4 FINAL RESULTS

For quick automatic makeup, we create a user-
friendly interface where users can take a photo with
laptop camera and import it so that they can do
makeup upon their portraits.
Here are other results of our project:

Figure 10: Left: Original image; Right: Final result

Figure 11: Left: Original image; Right: Final result.

REFERENCES

[1] Asthana, A., Zafeiriou, S., Cheng, S., & Pantic, M. (2014, June).
Incremental face alignment in the wild. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on (pp. 1859-

1866). IEEE.
[2] Everingham, M., Sivic, J., & Zisserman, A. (2006, September).

Hello! My name is... Buffy''--Automatic Naming of Characters in

TV Video. In BMVC (Vol. 2, No. 4, p. 6).
[3] Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: Interactive

foreground extraction using iterated graph cuts. ACM

Transactions on Graphics (TOG), 23(3), 309-314.
[4] Viola, P., & Jones, M. J. (2004). Robust real-time face detection.

International journal of computer vision, 57(2), 137-154.

[5] Color-Based Segmentation Using K-Means Clustering.
http://www.mathworks.com/help/images/examples/color-
based-segmentation-using-k-means-clustering.html

