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Introduction
Image segmentation has a wide variety of uses ranging from removing backgrounds to increase 

classification accuracy to simply wanting to copy and object onto another image. Many algorithms 
exist that use user generated input to help guide the segmentation process. While these perform well, it 
is beneficial to create a segmentation with as little user interaction as possible.

My goal with this project is to create an 8 stride fully convolutional network in Caffe based on 
the one described in the paper Fully Convolutional Networks for Semantic Segmentation[1]. Once a 
model is trained on this network, the model, given only an image, should be able to successfully 
segment out any sneakers contained in the image.

I begin first by training a 32 stride, 16 stride and 8 stride network on a dataset of images with 
white backgrounds, each network using the previous network's weights to speed up the training 
process. Later, I train an 8 stride network on a dataset of images containing a wide variety of 
backgrounds.

Data
The dataset used to train the networks contains 4,500 sneakers from Amazon on white 

backgrounds, each with a size of 224x224. By setting the white backgrounds to a value of 0 and 
anything not within some small range of white to 1, we create a binary mask the network can be trained
on. 

During the training on background images, these masks were used to paste only the shoes at 
random scales and positions on random images from the VOC Pascal 2012[2] dataset containing many 
different scenes. This method of pasting shoes onto images removes the need manually drawing a 
segmentation line around a shoe in thousands of images. The downside of this method is it can create a 
bias against shoes in positions that do not normally appear in e-commerce images.

Network
The 32 stride network used is based off the VGG-16[3] network used to classify entire images, 

replacing the fully connected layers with convolutional layers, followed by a deconvolution layer to 
map the classification to the same number of pixels in the input images. Because the 32 stride's 
classification layer has been pooled down to a size of 7x7, the final output segmentation is severely 
limited to a bilinear interpretation of this 7x7 mask.

The 16 stride network uses the 32 stride network as a base, then classifies the 5th pooling layer 
and combines this with the lowest level class predictions, allowing it to classify more accurately at a 
finer pixel scale. The 8 stride network uses the same idea on the 16 stride network, classifying the 4th 
pooling layer and combining this with the last prediction layer of the 16 stride network.



Detailed description of the networks used.

Training
In order to speed up efficiency of the training process, the networks were trained in steps, 

beginning with the 32 stride network. After each network was trained, the layer weights were used to 
initialize the next networks layers. If we were to train the 8 stride network from scratch, it would take 
significantly longer to train the convolution layers in the first half of the network.

The 32s network was trained with 50,000 iterations using a fixed learning rate of 1e-8 
decreasing down to 1e-10 after the first 20,000 iterations, a momentum of 0.99, and a batch size of 15. 
Both the 16s and 8s networks were trained using 20,000 iterations using a 1e-10 learning rate and 0.99 
momentum. These networks were all trained using the sneakers on white backgrounds.

Initially for the images containing background information, I attempted to train the networks 
from scratch, beginning with the 32 stride network. However, I discovered that using the weights from 
the 8 stride network trained on the white backgrounds allowed the network to quickly filter out the 
background after only 10,000 iterations with a learning rate of 1e-10. I found this very interesting 
because it shows that, even without any other information being shown to the network, it was still able 
to learn what a sneaker looks like. This leads me to believe that better segmentation on backgrounds 
could be gained by training on the white backgrounds more, which I did not have enough time to do. 
Lastly, I fine tuned the network with another 20,000 iterations at a learning rate of 1e-10.



Results
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Conclusion
Using Fully Convolution Networks, I was able to segment out the background of an image, 

leaving a significant part of the object of interest, in this case sneakers. Due to the time restriction, and 
each 10,000 iterations taking several hours, I was not able to get a perfect segmentation. But, with more
training I am certain this method would be able to return a very accurate segmentation prediction. 

Because this method involves no user input, it is favorable for many applications that aim to 
provide an quick and easy experience. In the future, finer segmentation might be found by using a 
wider variety of layer combinations, as well as training the background network on real images with 
sneakers in them rather than just pasting a shoe on top of a background.
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