
Mark Gubatan

Akash Jain

CS445

Derek Hoiem

Image Analogies – Final project CS 445

Overview
If we have a pair of images A and A’, where A is the original image and A’ is the original image

processed through a filter, we can use the pair, along with another image B, to compute a target image

B’ that is analogous to B in the same way that A’ is analogous to A (i.e. A:A’ :: B:B’). In other words, we

can use a pair of images to learn the filter applied from A to A’ and apply this same process to another

image. This algorithm has various applications including texture synthesis and capturing image filters.

Algorithm
We implemented the algorithm using the paper “Image Analogies”, by Hertzmann et al.

(http://www.mrl.nyu.edu/publications/image-analogies/analogies-72dpi.pdf). The paper contains two

pieces of pseudo-code that we must implement to construct B’ from A, A’ and B.

function create_image_analogy(A, A’, B):

Compute Gaussian pyramids for A, A’, and B

Compute features for A, A’, and B

Initialize the search structures (e.g., for ANN)

for each level L, from coarsest to finest, do:

for each pixel q ∈ B’L, in scan-line order, do:

p ← BESTMATCH(A, A’, B, B’, s, L, q)

B’L(q) ← A’L(p)

sL(q) ← p

return B_prime (from finest level)

function best_match(A, A’, B, B’, s, l, q):

 papp ← best_approximate_match(A, A’, B, B’, L, q)

 pcoh ← best_coherence_match(A, A’, B, B’, s, L, q)

 dapp ← ||FL(papp) - FL(q)||2

dcoh ← ||FL(pcoh) - FL(q)||2

if dcoh < dapp(1 + 2L - l�) then

 return pcoh

else

 return papp

Feature vector

Our first task is to generate Gaussian pyramids for all input images. These Gaussian pyramids are

necessary to gain finer accuracy in generating the B’ image because we first quickly generate B’ for the

smallest level of the Gaussian pyramid and use the smaller levels to help synthesize the larger levels. We

then create feature vectors for all of the input images and their pyramids. Since humans are more

http://www.mrl.nyu.edu/publications/image-analogies/analogies-72dpi.pdf

sensitive to changes in luminance, we use the luminance channel (Y in YIQ) as a feature for feature

matching. Therefore, a feature vector of a pixel refers to the luminance value of the pixel. To convert

RGB to YIQ (Luminance-Inphase-Quadrature), Matlab has a built-in function called “rgb2ntsc”. The

transformation would have been relatively easy even if we were not allowed to use this function as seen

from the equations below.

Data structure

 Next we initialize our structures to store the synthesized gaussian pyramids and feature vectors

at each level for B’. We also initialize a matrix, “S”, that stores the mapping of each pixel in the target

pari (B and B’) to the corresponding pixel in the source pair (A and A’). Therefore, after initialization, we

have the following matrices calculated and stored - Gaussian pyramids for A, A’ and B; Feature vectors

for each pyramid of A, A’ and B; and the matrix S.

Best match algorithm

Now we get onto the meat of the algorithm. A high-level explanation of what we do next is as

follows: for each level, starting from the coarsest to finest, we fill in B’ for that level by finding the

coordinates from image A that best matches the pixels in B, and then copying the corresponding pixel

with those same coordinates from A’ into B’. We keep updating the matrix S as we keep finding best

matches for a pixel in B’. Here is the algorithm for finding the best matched pixel -

function best_match(A, A’, B, B’, s, l, q):

 papp ← best_approximate_match(A, A’, B, B’, L, q)

 pcoh ← best_coherence_match(A, A’, B, B’, s, L, q)

 dapp ← ||FL(papp) - FL(q)||2

dcoh ← ||FL(pcoh) - FL(q)||2

if dcoh < dapp(1 + 2L - Lmax�) then

 return pcoh

else

 return papp

We pass in the feature vectors for the current level of A, A’, B, B’ (which is partially empty because it’s

being synthesized), the s matrix for the current level, the current level l, and q which is the coordinates

of the current pixel being synthesized in B’. In our implementation, we also additionally had to pass in

the feature vectors for the previous level (l-1) of A, A’, B and B’. We use two methods to find the best

matched pixel - Approximate-Nearest-Neighbor (ANN) algorithm and a coherence formula.

For ANN, we used the Matlab library

(https://github.com/jefferislab/MatlabSupport/tree/master/ann_wrapper). The library uses kd-trees

and we found the nearest neighbor using the luminance values of the 5x5 neighborhood (3x3

neighborhood in the smaller, coarser level) around the pixel q in image B.

For coherence matching, we find a pixel r* in the neighbourhood of a pixel q in the partially synthesized

image B’, such that when mapped to the corresponding pixel in A, minimizes the feature difference. We

then return S(r*) + (q - r*) .This formula the best pixel that is coherent with the portion of B’ that has

already been synthesized. We need to consider coherence so that we can favor pixels that are close

together from the source image. In other words, a smoother result is obtained by picking pixels that are

near each other rather than pixels from all over the image.

As talked in the paper, FL(p) denotes the concatenation of all feature vectors within a neighborhood of

pixels around pixel p from images A and A’ for both the current level and the previous, smaller level.

FL(q) denotes the same concatenation but around pixel q from images B and B’. Note that B’ is only

partially synthesized. So, to calculate both distances dapp and dcoh, we must take the norm of the

difference between the two concatenations of feature vectors for both images using both candidates

papp and pcoh. For both of these differences, we compute them as a weighted Gaussian distance so that

the differences in feature vectors further from p and q have smaller weight. We do this by applying a

Gaussian filter and taking the norm of the difference of feature vectors.

dcoh < dapp(1 + 2L – Lmax * Kappa)

With these distances, we then plug the distance into the above formula, where L is the current level and

Lmax is the highest level. Kappa is a positive, real number chosen by us where we can choose to

decrease the influence of ANN matching on choosing which pixel is our best match. As stated before, we

then return our best match’s pixel coordinates and copy that into our target image B’ for the current

level at the current pixel q.

Difficulties

A lot of difficulties that we had were from taking the 5x5 and 3x3 neighborhoods of the feature

vectors. Our approach pads the feature vectors by adding 2 pixels to the width and height with 0s, so

that when we are taking the neighborhood of a border pixel, we don’t try to access pixels with index 0 or

-1. Another difficulty we had was that color was distorted for some cases. This error was because we

copied over the color from A’ when we copied the pixel from A’ to B’. Some cases, such as the rabbit and

the nature picture must preserve the colors of B. Other cases, such as the texture synthesis and city

generation needed to preserve the colors of A’. Since the algorithm takes so long to run, fixing the small

errors also took a lot of time. Finally, unsurprisingly, there were a lot of index out of bounds & off-by-

one errors from random index typos, mistakes, etc. The overall result looks neat though.

https://github.com/jefferislab/MatlabSupport/tree/master/ann_wrapper

Results

All of the results were created using 4 levels of Gaussian pyramids.

Freud

Original set (A and A’)

Figure 1 (A) Figure 2 (A')

Output set (B and B’) (Kappa = 1)

Figure 8 (B) Figure 9 (B')

Gaussian Pyramids

The Gaussian pyramids were created as follows for B’. The pyramids allow for accuracy in the synthesis.

Level 1 (Coarse)

Level 2

Level 3

Level 4 (Fine)

Rabbit

Original set (A and A’)

Figure 3 (A) Figure 4 (A')

Output set (B and B’) (Kappa = 1)

Figure 5 (B') Figure 6 (B)

We stumbled upon an interesting fact here. Initially, instead of just transferring the luminance from A’

to B’, we had mistakenly copied the other channels from A’ to B’ too. As a result, we got a blue-ish

image, as shown in Figure 5 (below).

Figure 7

Toon (Cartoon effect) (Kappa=20) - Good

Toon 2 (Cartoon effect) (Kappa=20) – Not so good

The artefacts occur due to color dissimilarity between A and B. The algorithm fails to find appropriate

matches in A, for a pixel in B.

Failure

The following set of images resulted in a failure image as can be seen below.

The failure was mainly because of both poor approximate match and poor coherent results. There are

changes in color in B, that cannot be detected clearly from A (and hence A’). Also, there are a lot of

matching points for a color in B to A, each of which can map to an entirely different area in A’; hence the

unclear image.

