Image Warping

Computational Photography
Derek Hoiem, University of Illinois

Reminder: Proj 2 due monday

- Much more difficult than project 1 - get started asap if not already
- Must compute SSD cost for every pixel (slow but not horribly slow using filtering method; see tips at end of project page)
- Learn how to debug visual algorithms: imshow, plot, dbstop if error, keyboard and break points are your friends
- Suggestion: For "quilt_simple", first set upper-left patch to be upper-left patch in source and iteratively find minimum cost patch and overlay --- should reproduce original source image, at least for part of the output

Review from last class: Gradient Domain

Editing

General concept: Solve for pixels of new image that satisfy constraints on the gradient and the intensity

- Constraints can be from one image (for filtering) or more (for blending)

Project 3: Reconstruction from Gradients

1. Preserve $x-y$ gradients
2. Preserve intensity of one pixel

Source pixels: s
Variable pixels: v

1. minimize $\left(v(x+1, y)-v(x, y)-(s(x+1, y)-s(x, y))^{\wedge} 2\right.$
2. minimize $\left(v(x, y+1)-v(x, y)-(s(x, y+1)-s(x, y))^{\wedge} 2\right.$
3. minimize $(v(1,1)-s(1,1))^{\wedge} 2$

Project 3 (extra): NPR

- Preserve gradients on edges
- e.g., get canny edges with edge(im, 'canny')
- Reduce gradients not on edges
- Preserve original intensity

Colorization using optimization

- Solve for uv channels (in Luv space) such that similar intensities have similar colors
- Minimize squared color difference, weighted by intensity similarity

$$
J(U)=\sum_{\mathbf{r}}\left(U(\mathbf{r})-\sum_{\mathbf{s} \in N(\mathbf{r})} w_{\mathrm{r} s} U(\mathbf{s})\right)^{2}
$$

- Solve with sparse linear system of equations

Gradient-domain editing

Many image processing applications can be thought of as trying to manipulate gradients or intensities:

- Contrast enhancement
- Denoising
- Poisson blending
- HDR to RGB
- Color to Gray
- Recoloring
- Texture transfer

See Perez et al. 2003 and GradientShop for many examples

Gradient-domain processing

Saliency-based Sharpening

Gradient-domain processing

Non-photorealistic rendering

Project 3: Gradient Domain Editing

General concept: Solve for pixels of new image that satisfy constraints on the gradient and the intensity

- Constraints can be from one image (for filtering) or more (for blending)

Project 3: Reconstruction from Gradients

1. Preserve $x-y$ gradients
2. Preserve intensity of one pixel

Source pixels: s
Variable pixels: v

1. minimize $\left(v(x+1, y)-v(x, y)-(s(x+1, y)-s(x, y))^{\wedge} 2\right.$
2. minimize $\left(v(x, y+1)-v(x, y)-(s(x, y+1)-s(x, y))^{\wedge} 2\right.$
3. minimize $(v(1,1)-s(1,1))^{\wedge} 2$

Project 3 (extra): NPR

- Preserve gradients on edges
- e.g., get canny edges with edge(im, 'canny')
- Reduce gradients not on edges
- Preserve original intensity

Take-home questions

1) I am trying to blend this bear into this pool. What problems will I have if I use:
a) Alpha compositing with feathering
b) Laplacian pyramid blending
c) Poisson editing?

Take-home questions

2) How would you make a sharpening filter using gradient domain processing? What are the constraints on the gradients and the intensities?

Next two classes: warping and morphing

- Today
- Global coordinate transformations
- Image alignment
- Tuesday
- Interpolation and texture mapping
- Meshes and triangulation
- Shape morphing

Photo stitching: projective alignment

Find corresponding points in two images

Solve for transformation that aligns the images

Capturing light fields

Estimate light via projection from spherical surface onto image

Morphing

Blend from one object to other with a series of local transformations

Image Transformations

image filtering: change range of image

$$
g(x)=T(f(x))
$$

image warping: change domain of image

$$
g(x)=f(T(x))
$$

Image Transformations

image filtering: change range of image

$$
g(x)=T(f(x))
$$

image warping: change domain of image

$$
g(x)=f(T(x))
$$

Parametric (global) warping

$\mathbf{p}=(x, y)$

$$
\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)
$$

Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

$$
\begin{array}{r}
\mathrm{p}^{\prime}=\mathbf{M p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

Parametric (global) warping

Examples of parametric warps:

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

Scaling

- Scaling operation: $x^{\prime}=a x$

$$
y^{\prime}=b y
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } s}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What is the transformation from $\left(x^{\prime}, y^{\prime}\right)$ to (x, y) ?

2-D Rotation

2-D Rotation


```
Polar coordinates...
\(x=r \cos (\phi)\)
\(y=r \sin (\phi)\)
\(x^{\prime}=r \cos (\phi+\theta)\)
\(y^{\prime}=r \sin (\phi+\theta)\)
Trig Identity...
\(x^{\prime}=r \cos (\phi) \cos (\theta)-r \sin (\phi) \sin (\theta)\)
\(y^{\prime}=r \sin (\phi) \cos (\theta)+r \cos (\phi) \sin (\theta)\)
Substitute...
\(x^{\prime}=x \boldsymbol{\operatorname { c o s }}(\theta)-y \boldsymbol{\operatorname { s i n }}(\theta)\)
\(y^{\prime}=x \boldsymbol{\operatorname { s i n }}(\theta)+y \cos (\theta)\)
```


2-D Rotation

This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ,
$-x^{\prime}$ is a linear combination of x and y
$-y^{\prime}$ is a linear combination of x and y

What is the inverse transformation?

- Rotation by - θ
- For rotation matrices $\quad \mathbf{R}^{-1}=\mathbf{R}^{T}$

2x2 Matrices

What types of transformations can be represented with a 2×2 matrix?

2D Identity?

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around (0,0)?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Matrices

What types of transformations can be represented with a 2×2 matrix?

2D Rotate around (0,0)?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta^{*} x-\sin \Theta^{*} y \\
& y^{\prime}=\sin \Theta^{*} x+\cos \Theta^{*} y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
\boldsymbol{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y}
\end{array}\right]
$$

2D Shear?

$$
\begin{aligned}
x^{\prime} & =x+k_{x} * y \\
y^{\prime} & =k_{y} * x+y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & k_{x} \\
k_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over (0,0)?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2×2 Matrices

What types of transformations can be represented with a 2×2 matrix?

2D Translation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

NO!

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Mirror
- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Homogeneous Coordinates

Q: How can we represent translation in matrix form?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

Homogeneous Coordinates

Homogeneous coordinates

- represent coordinates in 2 dimensions with a 3 -vector

Homogeneous Coordinates

2D Points \rightarrow Homogeneous Coordinates

- Append 1 to every 2D point: (xy) \rightarrow (x y 1) Homogeneous coordinates \rightarrow 2D Points
- Divide by third coordinate (x y w) \rightarrow ($\mathrm{x} / \mathrm{w} \mathrm{y} / \mathrm{w}$) Special properties
- Scale invariant: (x y w) = k * (x y w)
- $(x, y, 0)$ represents a point at infinity
- $(0,0,0)$ is not allowed

Homogeneous Coordinates

Q: How can we represent translation in matrix form?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

A: Using the rightmost column:

$$
\text { Translation }=\left[\begin{array}{ccc}
1 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\
0 & 1 & \boldsymbol{t}_{\boldsymbol{y}} \\
0 & 0 & 1
\end{array}\right]
$$

Translation Example

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Basic 2D transformations as 3×3 matrices

$$
\begin{array}{cc}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} & {\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]} \\
\text { Translate } & \text { Scale } \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underset{\text { Rotate }}{\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]}} & {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \beta_{x} & 0 \\
\beta_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]} \\
\text { Shear }
\end{array}
$$

Matrix Composition

Transformations can be combined by matrix multiplication

$$
\begin{aligned}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{ccc}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \\
\mathbf{p}^{\prime} & =\mathrm{T}\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right)
\end{aligned}
$$

Does the order of multiplication matter?

Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

Projective Transformations

Projective transformations are combos of

- Affine transformations, and
- Projective warps

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$		\square	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$		\square	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$		\square	
affine	$[\boldsymbol{A}]_{2 \times 3}$		\square	
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$		\square	

These transformations are a nested set of groups

- Closed under composition and inverse is a member

Recovering Transformations

- What if we know f and g and want to recover the transform T?
- willing to let user provide correspondences
- How many do we need?

Translation: \# correspondences?

- How many Degrees of Freedom?
- How many correspondences needed for translation?
- What is the transformation matrix?

$$
\mathbf{M}=\left[\begin{array}{ccc}
1 & 0 & p_{x}^{\prime}-p_{x} \\
0 & 1 & p_{y}^{\prime}-p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Euclidian: \# correspondences?

- How many DOF?
- How many correspondences needed for translation+rotation?

Affine: \# correspondences?

- How many DOF?
- How many correspondences needed for affine?

Affine transformation estimation

- Math
- Matlab demo

Projective: \# correspondences?

- How many DOF?
- How many correspondences needed for projective?

Take-home Question

1) Suppose we have two triangles: $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. What transformation will map A to A^{\prime}, B to B^{\prime}, and C to C^{\prime} ? How can we get the parameters?

Take-home Question

2) Show that distance ratios along a line are preserved under 2d linear transformations.

Hint: Write down $x 2$ in terms of $x 1$ and $x 3$, given that the three points are co-linear

Next class: texture mapping and morphing

