
Similarity,
Clustering,
and Retrieval

Applied Machine Learning
Derek Hoiem

Dall-E

Last class: How to represent data

• Images, text, categories,
numerical  vector of numbers

• Dataset: a collection of data
points or samples from some
distribution

• We can measure entropy,
information gain, and other
distributional properties

Today’s lecture

• Similarity

• Retrieval
– “Brute force”
– Faiss library
– Approximate: LSH

• Clustering
– Kmeans
– Hierarchical Kmeans
– Agglomerative Clustering

Key principle of machine learning
Given feature/target pairs 𝑋𝑋1,𝑦𝑦1 , … , 𝑋𝑋𝑛𝑛,𝑦𝑦𝑛𝑛 :

if 𝑋𝑋𝑖𝑖 is similar to 𝑋𝑋𝑗𝑗, then 𝑦𝑦𝑖𝑖 is probably similar to 𝑦𝑦𝑗𝑗

Aggressive?

Aggressive Friendly

Probably
Aggressive

Fundamentally, learning depends on:
1. Representation of samples
2. Similarity function

Common Distance/Similarity Measures
• L2: Euclidean

𝑑𝑑2 𝒙𝒙,𝒚𝒚 = 𝒙𝒙 − 𝒚𝒚 2

= �
𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

Common Distance/Similarity Measures
• L1: City-Block

𝑑𝑑1 𝒙𝒙,𝒚𝒚 = 𝒙𝒙 − 𝒚𝒚 1

= �
𝑖𝑖

|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|

Common Distance/Similarity Measures
• Dot product, Cosine

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 𝒙𝒙,𝒚𝒚 = 𝒙𝒙𝑇𝑇𝒚𝒚 = �
𝑖𝑖

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

Dot product (or inner product)

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙,𝒚𝒚 =
𝒙𝒙𝑇𝑇𝒚𝒚

𝒙𝒙 𝟐𝟐 𝒚𝒚 𝟐𝟐

Cosine similarity

Cosine similarity

Dot product: how far does one vector go
in the direction of the other vector

Cosine similarity: how similar are the two
directions

Which is closest to the red circle under L1, L2, and cosine
distance?

Comparing distance/similarity functions

• L2 depends much more heavily than L1 on the coordinates
with the biggest differences

𝑑𝑑2 0 100 , 5 1 = 99.1
𝑑𝑑1 0 100 , 5 1 = 104

• Cosine and L2 are equivalent if the vectors are unit length
𝒙𝒙 − 𝒚𝒚 2

2 = 𝒙𝒙𝑇𝑇𝒙𝒙 − 2𝒙𝒙𝑇𝑇𝒚𝒚 + 𝒚𝒚𝑇𝑇𝒚𝒚 = 2(1 − 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙,𝒚𝒚)
1 1

Retrieval

• Given a new sample, find the closest sample in a dataset

• Applications
– Finding information (web search)
– Prediction (e.g. nearest neighbor algorithm)
– Clustering (kmeans)

“Brute force” search
• Compute distance between query and each dataset point and

return closest point

Brute force search pseudo-code
getNearest(x_q, X)

dist_min = Inf
idx_min = -1

For each nth sample in X:
dist = sum((X[n]-x_q)**2) # sum square diff
if dist < dist_min:

dist_min = dist
idx_min = n

return idx_min

FAISS library makes even brute force search very fast

• Multi-threading, BLAS libraries, SIMD vectorization, GPU
implementations

• KNN for MNIST takes seconds

https://engineering.fb.com/2017/03/29/data-
infrastructure/faiss-a-library-for-efficient-similarity-search/

Locality Sensitive Hashing (LSH)

A fast approximate search method to return similar data points
to query

Basic LSH process

1. Convert each data point into an array of bits or integers, using the
same conversion process/parameters for each

2. Map the arrays into buckets (e.g. with 10 bits, you have 2^10
buckets)

– Can use subsets of arrays to create multiple sets of buckets

3. On query, return points in the same bucket(s)
– Can check additional buckets by flipping bits to find points within hash

distances greater than 0

Random Projection LSH
Data Preparation
Given data {X} with dimension d:
1. Center data on origin (subtract mean)
2. Create b random vectors hb of length d
3. Convert each Xn to b bits: XnhT > 0

Query
1. Convert Xq to bits using h
2. Check buckets based on bit vector and similar bit vectors to return

most similar data points

h= np.random.rand(nbits, d) - .5

Key parameter: nbits
• Rule of thumb: nbits = dim is a decent choice (1 bit per feature dimension)
• Optionally, can retrieve K closest data points and then use brute force search on

those

Recall vs. exact nearest neighbor Time compared to brute force search

Nice video about LSH in faiss:
https://youtu.be/ZLfdQq_u7Eo

which is part of this very detailed and helpful post:
https://www.pinecone.io/learn/locality-sensitive-hashing-
random-projection/

https://youtu.be/ZLfdQq_u7Eo
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/

Inverse document file for retrieval of count-based docs

Applies to text (word counts), images (clustered keypoint counts), and
other tokenized representations

• Like a book index: keep a list of all the words (tokens) and all the pages
(documents) that contain them.

• Rank database documents based on summed tf-idf measure for each
word/token in the query document

tf-idf: Term Frequency – Inverse Document Frequency

words in document

times word
appears in document

documents

documents that
contain the word

Clustering

• Assign a label to each data point based on the
similarities between points

• Why cluster
– Represent data point with a single integer instead of a

floating point vector
• Saves space
• Simple to count and estimate probability

– Discover trends in the data
– Make predictions based on groupings

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly
select K centers

2. Assign each
point to nearest
center (L2 dist)

3. Compute new
center (mean)
for each cluster

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly
select K centers

2. Assign each
point to nearest
center (L2 dist)

3. Compute new
center (mean)
for each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering

Pseudo-code
kmeans(X, K, maxiter)

Create cluster centers
center = X[:K]

Until maxiter iterations or convergence:

For each nth sample in X:
get index of nearest center
idx[n] = get_nearest(X[n], centers)

For each kth center:
get mean of data points assigned to cluster k
center[k] = X[idx==k].mean(axis=0)

Convergence is if no idx changed in this iteration

return center, idx

What is the cost minimized by K means?

𝑖𝑖𝑖𝑖 ∗, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�
𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖𝑑𝑑𝑛𝑛 − 𝑋𝑋𝑛𝑛
2

1. Choose ids that minimizes square cost given centers
2. Choose centers that minimize square cost given ids

K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

What are some disadvantages of K-
means in terms of clustering quality?

2 minute break

• All feature dimensions equally important

• Tends to break data into clusters of similar numbers of points
(can be good or bad)

• Does not take into account any local structure

• Typically, not an easy way to choose K

• Can be slow if the number of data points and clusters is large

What are some disadvantages of K-means in terms
of clustering quality?

Implementation issues
• How to choose K?

– Typically chosen by hand
– Often based on the number of clusters you

want considering time/space requirements

• How do you initialize
– Randomly choose points
– Iterative furthest point

Evaluating clustering with RMSE
• RMSE = root mean squared error
• Measures a kind of compression loss, i.e. how well is each data

point represented by the closest cluster center

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝐶𝐶) =
1
𝑁𝑁

�
𝑛𝑛∈{0..𝑁𝑁−1}

min
𝑘𝑘

𝐶𝐶𝑘𝑘 − 𝑋𝑋𝑛𝑛 2
2

Example: K-means on MNIST

K=3, RMSE = 49.3

K=5, RMSE = 45.6

K=10, RMSE = 41.9

K=20, RMSE = 37.82

K=40, RMSE = 34.44

K=1, RMSE = 55.0

Evaluating clusters with purity

• We often cluster when there is no definitively correct answer,
but a purity measure can be used to check the consistency
with labels

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
𝑘𝑘

max
𝑦𝑦

�
𝑛𝑛:𝑖𝑖𝑑𝑑𝑛𝑛=𝑘𝑘

𝛿𝛿(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 = 𝑦𝑦) /𝑁𝑁

• Purity is the count of data points with the most common label
in each cluster, divided by the total number of data points (N)

• E.g., labels = {0, 0, 0, 0, 1, 1, 1, 1}, cluster ids = {0, 0, 0, 0, 0, 1, 1, 1},
purity = ?

purity = 7/8

• Purity can be used to select the number of clusters, or to
compare approaches with a given number of clusters
– A relatively small number of labels can be used to estimate

purity, even if there are many data points

Hierarchical K-means

• Iteratively cluster points into K groups, then cluster each group
into K groups

Advantages of Hierarchical K-Means
• Fast cluster training

– With a branching factor of 10, can cluster into 1M clusters by
clustering into 10 clusters ~111,111 times, each time using e.g. 10K
data points

– Vs. e.g. clustering 1B data points into 1M clusters
– Kmeans is O(K*N*D) per iteration so this is a 900,000x speedup!

• Fast lookup
– Find cluster number in O(log(K)*D) vs. O(K*D)
– 16,667x speedup in the example above

Are there any disadvantages of hierarchical Kmeans?

Yes, the assignment might not be quite as good, but often
usually isn’t a huge deal since K means is used to
approximate data points with centroid anyway

Agglomerative clustering
• Iteratively merge the two most similar points or clusters

– Can use various distance measures
– Can use different “linkages”, e.g. distance of nearest points in two clusters or the cluster averages
– Ideally the minimum distance between clusters should increase after each merge (e.g. if using

the distance between cluster centers)
– Number of clusters can be set based on when the cost to merge increases suddenly

https://dashee87.github.io/data%20science/gener
al/Clustering-with-Scikit-with-GIFs/

Agglomerative clustering
• With good choices of linkage, agglomerative clustering can

reflect the data connectivity structure (“manifold”)

https://dashee87.github.io/data%20science/gener
al/Clustering-with-Scikit-with-GIFs/

Clustering based on distance of 5
nearest neighbors between clusters

Applications of clustering

• K-means
– Quantization (codebooks for image generation)
– Search
– Data visualization (show the average image of clusters of images)

• Hierarchical K-means
– Fast search (document / image search)

• Agglomerative clustering
– Finding structures in the data (image segmentation, grouping camera

locations together)

Things to remember

• Similarity is foundational to machine
learning

• Use highly optimized libraries like FAISS for
search/retrieval

• Approximate search methods like LSH can
be used to find similar points quickly

• TF-IDF is used for similarity of tokenized
documents and used with index for fast
search

• Clustering groups similar data points

• K-means is the must-know method, but
there are many others

	Similarity, Clustering, and Retrieval�
	Last class: How to represent data
	Today’s lecture
	Key principle of machine learning
	Common Distance/Similarity Measures
	Common Distance/Similarity Measures
	Common Distance/Similarity Measures
	Which is closest to the red circle under L1, L2, and cosine distance?
	Comparing distance/similarity functions
	Retrieval
	“Brute force” search
	Brute force search pseudo-code
	FAISS library makes even brute force search very fast
	Locality Sensitive Hashing (LSH)
	Basic LSH process
	Random Projection LSH
	Key parameter: nbits
	Nice video about LSH in faiss: https://youtu.be/ZLfdQq_u7Eo��which is part of this very detailed and helpful post:�https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
	Inverse document file for retrieval of count-based docs
	Clustering
	K-means algorithm
	K-means algorithm
	Pseudo-code
	What is the cost minimized by K means?
	K-means Demo
	What are some disadvantages of K-means in terms of clustering quality?
	Slide Number 27
	Implementation issues
	Evaluating clustering with RMSE
	Example: K-means on MNIST
	Evaluating clusters with purity
	Hierarchical K-means
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Advantages of Hierarchical K-Means
	Are there any disadvantages of hierarchical Kmeans?
	Agglomerative clustering
	Agglomerative clustering
	Applications of clustering
	Things to remember

