Clustering and
Retrieval

Applied Machine Learning
Derek Hoiem

Recall from last lecture: What are three ways to mitigate
oroblems in bias from Al algorithms?

* Model cards
* Data sheets
* |ntersectional performance analysis

* Adversarial algorithm to prevent using
features that predict sensitive attributes such
as race or gender

* Multi-task learning to facilitate learning of less
common classes

We've learned a lot about supervised prediction
algorithms — now we will learn about methods to organize
and analyze data without labels

e Clustering and retrieval

* EM and missing data

e Estimating probabilities for continuous variables
* Projections for compression and visualization

* Topic modeling

* Anomaly detection

Today’s lecture

* Clustering
— Kmeans
— Hierarchical Kmeans
— Agglomerative Clustering

e Retrieval

— Using Hierarchical Kmeans
— LSH
— Faiss library

Clustering

* Assign a label to each data point based on the
similarities between points

 Why cluster

— Represent data point with a single integer instead of a
floating point vector

* Saves space
e Simple to count and estimate probability

— Discover trends in the data
— Make predictions based on groupings

K-means algorithm

@
1. Randomly : o
select K centers 2 at
EDDD
¥
2. Assign each ~
point to nearest o .
center ey | &
a |
DEIEI_.
¥
3.Compute new g o
center (mean) /,-"
for each cluster N8
N

lllustration: http://en.wikipedia.org/wiki/K-means clustering

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

L]
o o
1. Randomly 0 o
select K centers - E..
o
om

2. Assign each
point to nearest
center

Back to 2
3. Compute new d

center (mean) R {j

for each cluster .\:
(]

lllustration: http://en.wikipedia.org/wiki/K-means clustering

http://en.wikipedia.org/wiki/K-means_clustering

K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

What is the cost minimized by K means?

2
] * *]
n

1. Choose ids that minimizes square cost given centers
2. Choose centers that minimize square cost given ids

Implementation issues

e How to choose K?

— Can use MDL (minimum description length)
principle that minimizes a cost of parameters
plus cost of negative data log likelihood, but in
practice K is almost always hand chosen

— Often based on the number of clusters you
want considering time/space requirements

* How do you initialize
— Randomly choose points
— Iterative furthest point

Evaluating clusters with purity

* We often cluster when there is no definitively correct answer,
but a purity measure can be used to check the consistency
with labels

purity = Z (m;;lx Z 6 (label,, = y))/N
K

n:id,=k

* Purity is the count of data points with the most common label
in each cluster, divided by the total number of data points (N)

e E.g.,labels={0,0,0,0,1,1,1,1} clusterids={0,0,0,0,0,1, 1, 1},
purity =7

purity = 7/8

e Purity can be used to select the number of clusters, or to
compare approaches with a given number of clusters

— Arelatively small number of labels can be used to estimate
purity, even if there are many data points

Kmeans code

def kmeans no display(X, K, max iter=10@):
permuted indices = np.random.permutation(X.shape[@]) # get permuted indices
centers = X[permuted indices[:K]] # initialize centers to different random data points
assignment = np.zeros((len(X),))
for t in range(max_iter):
dist = np.zeros((len(X), K))
for 1 in range(len(X)):
dist[1i, :] = np.sum((X[1]-centers)**2, axis=1)
min_dist = np.argmin(dist, axis=1)
cost = np.mean(np.min(dist, axis=1)) # average squared distance
if (min dist!=assignment).any():
assignment = min dist
for 1 in range(K): # update centers
centers[1i, :] = np.mean(X[assignment==1], axis=0)
else:
break
return assignment, cost

https://colab.research.google.com/drive/1tDaNWN9z14oDS89L8s9OBoue-PizID_1?usp=sharing

What are some disadvantages of K-means in terms of
clustering quality?

* All feature dimensions equally important

* Tends to break data into clusters of similar numbers of points (can be good
or bad)

* Does not take into account any local structure
* Typically, not an easy way to choose K

* Can be very slow if the number of data points and clusters is large

Hierarchical K-means

* |teratively cluster points into K groups, then cluster each group
Into K groups

Advantages of Hierarchical K-Means

e Fast cluster training

— With a branching factor of 10, can cluster into 1M clusters by
clustering into 10 clusters ~111,111 times, each time using e.g. 10K
data points

— Vs. e.g. clustering 1B data points into 1M clusters
— Kmeans is O(K*N*D) per iteration so this is a 900,000x speedup!

* Fast lookup
— Find cluster number in O(log(K)*D) vs. O(K*D)
— 16,667x speedup in the example above

Are there any disadvantages of hierarchical Kmeans?

Yes, the assignment might not be quite as good, but often
usually isn’'t a huge deal since K means is used to
approximate data points with centroid anyway

Agglomerative clustering

* Iteratively merge the two most similar points or clusters
— Can use various distance measures
— Can use different “linkages”, e.g. distance of nearest points in two clusters or the cluster averages

— ldeally the minimum distance between clusters should increase after each merge (e.g. if using
the distance between cluster centers)

— Number of clusters can be set based on when the cost to merge increases suddenly

Hierarchical Clustering Dendrogram

p5

p2

Euclidean Distance

pl

p3

Y A e N S T N T https://dashee87.github.io/data%20science/gener
sample Index al/Clustering-with-Scikit-with-GIFs/

Agglomerative clustering

* With good choices of linkage, agglomerative clustering can
reflect the data connectivity structure (“manifold”)

Wlthuut CDI‘II‘IECtIUIty With CDI‘IHECtIVIty’

Clustering based on distance of 5
nearest neighbors between clusters

https://dashee87.github.io/data%20science/gener
al/Clustering-with-Scikit-with-GIFs/

Applications of clustering

e K-means

— Quantization (codebooks for image generation)
— Search

— Data visualization (show the average image of clusters of images)

* Hierarchical K-means
— Fast search (document / image search)

* Agglomerative clustering

— Finding structures in the data (image segmentation, grouping camera
locations together)

2 minute break

Are there any times that you’ve used clustering, or that it would
be useful?

Retrieval

* Given a new sample, find the closest sample in a dataset

* Applications
— Finding information (web search)
— Prediction (e.g. nearest neighbor algorithm)
— Clustering (kmeans)

Vanilla Search

 Compute distance between query and each dataset point and
return closest point

Build index for a collection:

Y1,.Y25 -3 Yn eRd .
: Indexing

‘ ,
o —_—
Tes wre wes
—_—
—_—
“en wan

]
P —
—_—

Media
escriptio

l:

Result: & - argmin,_, |z -yl

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-
library-for-efficient-similarity-search/

Faiss library makes even brute force search very fast

* Multi-threading, BLAS libraries, SIMD vectorization, GPU
implementations

e KNN for MNIST takes seconds

import faiss # make faiss available
index = faiss.IndexFlatL2(d) # build the index, d=size of wvectors

here we assume xb contains a n-by-d numpy matrix of type float32

index.add(xb) # add vectors to the index

print index.ntotal

xq is a n2-by-d matrix with gquery vectors
k = 4 # we want 4 similar vectors
D, I = index.search{xq, k) # actual search

print I

https://engineering.fb.com/2017/03/29/data-
infrastructure/faiss-a-library-for-efficient-similarity-search/

Inverse document file for retrieval of count-based docs

Applies to text (word counts), images (clustered keypoint counts), and
other tokenized representations

* Like a book index: keep a list of all the words (tokens) and all the pages
(documents) that contain them.

e Rank database documents based on summed tf-idf measure for each
word/token in the query document

tf-idf: Term Frequency — Inverse Document Frequency
documents

times word 7 Ny N <—
appears in document i = g 02 -
I
- { T # documents that

contain the word
words in document

Locality Sensitive Hashing (LSH)

A fast approximate search method to return similar data points
to query

A typical hash function aims to place different values in
separate buckets

keys hashing hash values
function buckets
WY e N I — -
’ ' @ ::ooo O
::QOQ —
e = e e
. ./’ 2 /
. ‘ '0 ..: """""""" ‘ ‘
L JON —
oee— >~ N\[|..... -

https://www.pinecone.io/learn/locality-
sensitive-hashing-random-projection/

LSH aims to put similar keys in the same bucket

hashing hash
function buckets

keys values

https://www.pinecone.io/learn/locality-
sensitive-hashing-random-projection/

Basic LSH process

1. Convert each data point into an array of bits or integers, using the
same conversion process/parameters for each

2. Map the arrays into buckets (e.g. with 10 bits, you have 2210
buckets)

— Can use subsets of arrays to create multiple sets of buckets

3. On query, return points in the same bucket(s)

— Can check additional buckets by flipping bits to find points within hash
distances greater than O

Random Projection LSH

Data Preparation

Given data {X}! with dimension d:

1. Center data on origin (subtract mean)

2. Create b random vectors h, of length d h=np.random.rand(nbits, d) - .5
3. Convert each X, to b bits: X h">0

Query
1. Convert X, to bits using h

2. Check buckets based on bit vector and similar bit vectors to return
most similar data points

Key parameter: nbits

 Example with 1M 128-bit SIFT vectors

More bits returns more similar vectors

N
S
g_ 0.7 —
£ i
w
e
£ 0.6
Q
Q

—~/ -

[' | ' {
40 80 120
nbits

Similarity of LSH-returned vector

recall

A\ nbits
0.6 - — 768
\ — 512
- — 128
0.4 1 i
0.2 - BEE
T T —

|] |
0.2 0.4 0.0 0.8 1.0
number of vectors (1e6)

Recall vs. exact nearest neighbor

Key parameter: nbits

 Example with 1M 128-bit SIFT vectors

But more bits takes more time to query because it needs to
search more buckets to find a collision

A

0.6

/\ 3

T

0.4 -

recall

0.2 - -

nbits
— 768
— 512
— 128
— 64

1.0

T | T
0.2 O.4 O.c 0.8

number of vectors (1e6)

Recall vs. exact nearest neighbor

=

time (as factor of Flat search)

2.0 +
nbits
— 768
— 512
— 128
— 64

]
0.8
number of vectors (1e6)

0.4 0.6

Time compared to brute force search

Key parameter: nbits

e Rule of thumb: nbits = dim is a decent choice (1 bit per feature dimension)

* Optionally, can retrieve K closest data points and then use brute force search on

those

A

0.6

/\

e

0.4 -

recall

0.2 - -

nbits
— 7068
— 512
— 128
— 64

1.0

0.2

| ! |
o.4 0.0 0.8
number of vectors (1e6)

Recall vs. exact nearest neighbor

=

time (as factor of Flat search)

2.0 +
nbits
1.5_ — 768
— 512
FlatL2 — 128
I, . SIS, L. (e — o4

o
i

1 L] 1
0.4 0.0 0.8
number of vectors (1e6)

Time compared to brute force search

Nice video about LSH in faiss:
https://youtu.be/ZLfdQqg u7Eo

which is part of this very detailed and helpful post:
https://www.pinecone.io/learn/locality-sensitive-hashing-
random-projection/

https://youtu.be/ZLfdQq_u7Eo
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/

1. Clustering and Fast Retrieval [40 points]

Efficient querying of high-dimensional data is important for many applications, including
retrieval, clustering, and K nearest-neighbor classification. In this part, we will use the Faiss
(Facebook Al Similarity Search) library to explore kmeans and KNN on the MNIST data.

K-means: Use faiss to “train” Kmeans (K=10) on x_train. Then, get the cluster indices

cluster idx forthe samples in x_test. Display the average sample distance to its centroid,
purity, and centroids with the following code.

print({dist.mean())

purity, counts = get purity(y test, cluster idx)
idx = get cluster order(counts)
display mnist (kmeans.centroids[idx, :],1,E)

Repeat this for K=10, 20, 30, 40, 50, ... 100 and display the cluster center visualization and
record mean distance and purity for each. You can experiment with niter and nredo (see
documentation). Include line plots of K vs. punty and K vs. mean distance in your report. Also
include the displays of centroids for K=10.20,30.

Also, answer a few questions in your report:

1. As you increase K, do you expect the purty to increase? Why or why not?

2. Inaqgiven run, is the average distance of a sample to centroid guaranteed to
monotonically decrease (or not change) with each iteration? Why or why not?

3. If you do enough terations, is Kmeans guaranteed to give you the optimal clustering that
minimizes the sum of distances between each sample and its center? Why or why not?

4. Does improving the Kmeans objective necessarily improve expected punty? Why or why
not?

1-NN Revisited: Remember how this took tens of minutes for HW 17 Use the library for more
efficient nearest neighbor classification. Don’t worry, it will be much faster. You can try two
methods, initialized by

index lsh = faiss.IndexL5H(dim, npbits) # LSH
index flatlZ = faiss.IndexFlatLZ(dim) # Brute Force

In either case, you add the data to search for with index.add (¥ data) and perform the search
With index.=zearch (X query, l). Try using both methods for 1-NN using x_train and

x test. Try varying nbits to see how it affects time and accuracy (e.9. ndim/2, ndim,
ndim*2). If your accuracy is roughly 10% (chance performance), check the shapes of y test

and the returned indices to make sure they are the same. For each method, report test error
and the time to add and to search, using time. time (). See documentation of the different

methods available, and feel free to try out more.

Things to remember

* Clustering groups similar data points

e K-means is the must-know method,
but there are many others

* TF-IDF is used for similarity of
tokenized documents and used with
index for fast search

* Approximate search methods like LSH
can be used to find similar points
quickly

* Use highly optimized libraries like
FAISS

keys
e Oo0—>
0 0——>

o0 0———>
00—

oe0—>

O O

@O

OO

hashing hash
function

values

buckets

	Slide 1: Clustering and Retrieval
	Slide 2: Recall from last lecture: What are three ways to mitigate problems in bias from AI algorithms?
	Slide 3: We’ve learned a lot about supervised prediction algorithms – now we will learn about methods to organize and analyze data without labels
	Slide 4: Today’s lecture
	Slide 5: Clustering
	Slide 6: K-means algorithm
	Slide 7: K-means algorithm
	Slide 8: K-means Demo
	Slide 9: What is the cost minimized by K means?
	Slide 10: Implementation issues
	Slide 11: Evaluating clusters with purity
	Slide 12: Kmeans code
	Slide 13: What are some disadvantages of K-means in terms of clustering quality?
	Slide 14: Hierarchical K-means
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Advantages of Hierarchical K-Means
	Slide 28: Are there any disadvantages of hierarchical Kmeans?
	Slide 29: Agglomerative clustering
	Slide 30: Agglomerative clustering
	Slide 31: Applications of clustering
	Slide 32: 2 minute break
	Slide 33: Retrieval
	Slide 34: Vanilla Search
	Slide 35: Faiss library makes even brute force search very fast
	Slide 36: Inverse document file for retrieval of count-based docs
	Slide 37: Locality Sensitive Hashing (LSH)
	Slide 38: A typical hash function aims to place different values in separate buckets
	Slide 39: LSH aims to put similar keys in the same bucket
	Slide 40: Basic LSH process
	Slide 41: Random Projection LSH
	Slide 42: Key parameter: nbits
	Slide 43: Key parameter: nbits
	Slide 44: Key parameter: nbits
	Slide 45: Nice video about LSH in faiss: https://youtu.be/ZLfdQq_u7Eo which is part of this very detailed and helpful post: https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
	Slide 46
	Slide 47
	Slide 48: Things to remember

