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Today’s lecture

• Review a few exam questions

• Example of building an ML application

• Transfer learning



Exam
• Well done!



False: It’s possible (and common) for a method to achieve low/zero training error, but still perform badly in 
testing, especially if the training examples are few compared to the model size



(a): The parameters optimize the objective for the training data, so evaluation on the training data is a 
strongly biased optimistic estimate of performance, and is not a good indicator of expected performance 
for future examples



(c) The trees are independently trained (a) All features are used to train each tree



(b) x=3y~=3 for regression and 
nearest neighbor



False: The weight update is not sampled randomly from a uniform distribution, but computed 
from a random sample of data.  Also, SGD does not proceed by checking whether an update 
decreases the loss -- it just takes a step according to the loss gradient for that mini-batch. 



False: Sigmoid activations are very non-linear.  The problem is that the gradient 
is always less than 1 and often very small, so with many layers, the gradient 
becomes negligible.



We’ve covered a lot of ground in deep networks

• ReLU activations, residual connections, and improved 
optimization techniques enabled training arbitrarily large 
and deep models

• Transformers provide a general and scalable way to process 
many kinds of data

• Training on large annotated datasets or even larger 
unannotated datasets yields impressive models that are 
useful for many applications



How do you make your own ML application?
Example: Safety inspector wants to know what fraction of 
workers are wearing helmets, gloves, and boots on each job site

• PPE use is low (e.g., 60% use in a study in Egypt; frequent lack of use in US and other countries too)
• 1,008 fatal and 174,100 non-fatal injuries in US construction in 2020
• Consistently using PPE would significantly reduce injury and sometimes death

Image src

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809954/
https://www.solutionsgc.com/safe-work-environment/


Step 1: Propose a solution in more technical terms
Proposed solution: Process images from the job site to detect the 
workers and count what fraction of detected workers are 
wearing each item

Left Glove: No
Right Glove: No
Hard hat: Yes
Vest: Yes
Boots: Yes



Step 1: Propose a solution in more technical terms
Main ML problem: Given an image, detect each worker and 
whether each detected worker is wearing: (a) glove on left hand; 
(b) glove on right hand; (c) boots; (d) hard hat; (e) vest

Note: There are lots of other aspects to the problem that we won’t consider in this example
• How to get images onto a server where we can process them
• How to avoid duplicate counts when the same person is in more than one image on the same day
• How to summarize results and report them to the safety inspector

src
src

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.constructionbusinessowner.com%2Fconstruction-safety%2Fassessing-your-companys-safety-strategies&psig=AOvVaw2l312jCozqL-hcCQK27PfA&ust=1679161021214000&source=images&cd=vfe&ved=0CBEQ3YkBahcKEwioqOu4wOP9AhUAAAAAHQAAAAAQEw
https://www.constructionbusinessowner.com/construction-safety/assessing-your-companys-safety-strategies


Step 2: Decide how to measure success
• What matters?

– We want the overall estimate of 
fraction of workers wearing each 
item to be accurate

– We want to report specific 
instances of workers not wearing 
an item, so that they can be 
checked as problematic or not



Step 2: Decide how to measure success
• Key aspects of performance

– Human detection performance
• Do we care about “small” or heavily occluded 

workers?
• What counts as correct? (maybe high overlap 

in bounding boxes)
• Measure precision (fraction of detections that 

are correct) and recall (fraction of workers 
that are detected)

• Can measure Precision and Recall for each 
level of confidence and generate a P-R curve

• Common overall performance measure is 
average precision

• We may care about recall at a high precision 
value because we don’t care about counting 
the number of workers, just knowing how 
likely a worker is to wear PPE

src

src

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.dreamstime.com%2Fstock-footage-busy-construction-site-time-lapse-video-panning-video64668813&psig=AOvVaw1DiJbv77WNv2uYNvv2m4XY&ust=1679161548507000&source=images&cd=vfe&ved=0CBEQ3YkBahcKEwjQzeq2wuP9AhUAAAAAHQAAAAAQAw
https://github.com/ultralytics/yolov3/issues/898


Step 2: Decide how to measure success
• Key aspects of performance

– Human detection performance
– Apparel classification performance, 

for correctly detected humans and 
each item:

• TP rate: fraction of actual items that 
are detected

• FP rate: fraction of item detections 
that are false

• Summarize with equal error rate, 
accuracy when confidence is set so 
that FP rate = (1- detection rate)

EER



Step 2: Decide how to measure success
• Key aspects of performance

– Human detection performance
– Apparel detection performance, for correctly detected humans 

and each item
– Overall: Deviance between the estimated fraction of workers 

wearing equipment from the true fraction over a set of images
• Difference in fractions
• Bias: tends to overcount or undercount
• Variance: how much could the difference be expected to vary, given a 

particular number of images



Step 3: collect and annotate validation/test images

1. Collect images
– Should be the same kind of images that will be processed in deployment
– Collect from a variety of sites and different dates. Try to get representative diversity

2. Annotate
– Draw boxes around each worker, even very small and hard to detect ones
– For each PPE item, label “present”, “absent”, or “not visible”
– How to get annotations

• In house:
– Use open source tool, such as VGG image annotator, or commercial tool like LabelBox
– Develop custom tool (e.g. to process 360 images or fully integrate into existing application)

• Outsource:
– Amazon Mechanical Turk or other crowdsourcing tool
– Commercial service

• In this case, creating a small initial development validation set in-house and larger set by 
outsourcing could make sense

3. Split into a validation set and test set

https://www.robots.ox.ac.uk/%7Evgg/software/via/


Step 4: Determine technical details of approach
• For this example, we’ll base the approach on Mask-RCNN

Detects objects and person keypoints

Includes additional branch to 
detect person keypoints

Modifications
• Remove bounding box detections and masks for non-

person objects
• Add classification layer to keypoint branch to classify

• Wearing left glove
• Wearing right glove
• Wearing hard hat
• Wearing boots
• Wearing safety vest



Step 5: Collect training data
• Consider combination of existing data (with applicable 

licenses) and new data
• Existing

– Papers with code
– Google for existing papers/datasets, e.g. 

• Collect own data
– similar to collecting test/validation, but not quite as much concern 

about being representative or reflecting actual use cases
– E.g., could ask job sites to send photos of workers wearing and not 

wearing PPE (on purpose, briefly) while in natural poses

https://paperswithcode.com/datasets?mod=images&task=pose-estimation
https://github.com/ZijianWang1995/PPE_detection


Step 6: Develop model

• Whenever possible, start 
with a pretrained model

• Alternatively, you could 
use unsupervised 
pretraining to initialize 
your model (e.g. Masked 
Autoencoder)

(from Chat GPT)

https://huggingface.co/models

https://huggingface.co/models


Step 6a: Develop model: establish baselines
• Run the model as-is on your validation data and 

measure human detection performance

• Train a linear probe for classifying PPE item 
presence and measure all performance metrics

• Manually validate your evaluation code by 
displaying images and detections and checking 
against metrics



Step 6b: Develop model: refine model
• Fine-tune the model on your 

data
• Train using mix of existing and 

application-specific data
– Apply only the losses that are 

applicable (e.g. detection or 
pose only for some datasets)

• Use tools like TensorBoard or 
Weights and Biases to 
monitor training and compare 
results
– Always plot validation and 

training loss, and measure 
validation performance at 
training milestones

src

https://huggingface.co/autotrain

https://www.researchgate.net/figure/Multi-head-model-left-and-singlehead-model-right-In-the-multi-head-model-the-output_fig2_350088197
https://huggingface.co/autotrain


Step 7: Evaluate on test set
• Measure performance metrics and characterize when it works 

and doesn’t
– As function of occlusion, person size, camera viewpoint, etc



Step 8: Integrate into application

• Beta test in complete workflows

• Write guides for when it works and doesn’t

• Improve efficiency, refine approach



Summary of how to build a new ML application
1. Identify problem and general approach to solution

– This also involves thinking ahead to metrics, available models, data, and more, to ensure viability
2. Specify success metrics

– Check with product managers and/or users to ensure these metrics reflect important performance 
characteristics

– Often, the metrics can’t be optimized directly
3. Create evaluation sets

– Achieving targets for success metrics on these sets should indicate high likelihood of application success
4. Select model, objectives, and other design details

– Usually this involves finding an analogous approach that has been successful
5. Collect data for training

– Custom data and labeling is expensive and time-consuming, so exploit available data sources where 
available, and as allowed by license terms

6. Develop model, starting with baselines and simple approaches
– Starting simple is critical so that it is easier to debug and validate changes

7. Evaluate on your test set
– It’s not just about the performance number, but about predictability and effectiveness within the 

application
8. Integrate into the application

– This requires a lot of work and testing



2 minute break



Thank you to Yuxiong Wang for following slides on 
domain adaptation and transfer learning!



Challenge for Machine Learning Models

• Development and real-world application may face different 
scenarios

• Limiting model performance and reliability

29
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Trained
ML Model

Real-world 
Setting
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Performance

Slide credit: Yuxiong Wang



Types of Shifts
• Mainly two types of shifts from one scenario to another:

Task shift Domain shift

30
Slide credit: Yuxiong Wang



Task Shift: Changed Model Objectives

31

Classifying dogs and cats
Source (Old) Task

Classifying squirrels and birds
Target (New) Task

Slide credit: Yuxiong Wang



Domain Shift: Changed Input Data Distributions

32

Classifying dogs and cats in studio
Source (Old) Domain

Classifying dogs and cats on grass
Target (New) Domain

Slide credit: Yuxiong Wang



Types of Shifts: Task or Domain?

• Task shift
– Objective of model is changed
– But data distributions are usually assumed similar or related

• Domain shift
– Input data come from changed distributions
– But model task usually remains the same

33
Slide credit: Yuxiong Wang



Overcoming Task/Domain Shift

34
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Slide credit: Yuxiong Wang



Overcoming Task/Domain Shift

• Task shift
– Changed task objective

• Domain shift
– Changed data distribution

• Some adaptation ideas may be applicable for both (e.g., Meta-
learning)

• Task adaptation
– Transfer learning
– Meta-learning

• Domain adaptation
– Instance translation
– Domain adversarial training

35
Slide credit: Yuxiong Wang



Application: Autonomous Driving
• Adapt to different weather conditions, lighting conditions, or 

driving environments

36

Normal Weather Condition Foggy Weather Condition

Images from Sakaridis et al. IJCV '18
Slide credit: Yuxiong Wang



Application: Robotics
• Adapt from simulated environment to real-world robotic 

systems, or adapt from one learned task to another

37Images from Google Research, 2020
Slide credit: Yuxiong Wang



Application: Speech recognition
• Adapt to different accents, speaking styles, or environmental 

conditions

• Example: Model trained with American English could be 
adapted to British English by fine-tuning on new domain

38
Slide credit: Yuxiong Wang



Methods for Task Adaptation
• Transfer learning: Pre-training and fine-tuning

• Meta-learning: Model-Agnostic Meta-Learning (MAML) and 
variants

39
Slide credit: Yuxiong Wang



Transfer Learning
• Goal: To reuse knowledge learned from one task (which 

usually has abundant supervisory information), to another 
related task

• Implementation is simple
– "Pre-train" model on source task
– Copy learned weights from learned model
– "Fine-tune" new model on target task

40
Slide credit: Yuxiong Wang



Transfer Learning

41

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize 
weights

Slide credit: Yuxiong Wang



Transfer Learning
• Step 1: Pre-train Model 1 on Task 1

42

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize 
weights

Slide credit: Yuxiong Wang



Transfer Learning
• Step 2: Initialize weights using learned Model 1

43

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize 
weights

Slide credit: Yuxiong Wang



Transfer Learning
• Step 3: Fine-tune Model 2 on Task 2

– Backbone may use a smaller learning rate or even be "frozen"

44

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize 
weights

Slide credit: Yuxiong Wang



Model-Agnostic Meta-Learning (MAML)
• Proposed by Finn et al. ICML '17

• Goal: To learn a good parameter initialization that can be 
quickly adapted to new tasks

• Model-agnostic: Can be applied to any differentiable model
– Flexible, can be used in a wide range of applications
– Including computer vision, natural language processing, and robotics

45
Slide credit: Yuxiong Wang



Model-Agnostic Meta-Learning (MAML)
• Assumption and setting

– Have a pool of various tasks
– Each task contains a set of training/validation samples

• An example of task pool
– Classify Dogs into Shepherd, Labrador, Golden, Husky ...
– Classify Cat into Siamese, Maine, Persian, Shorthair ...
– Classify Bird into Canary, Parrot, Dove, Sparrow ...

46
Slide credit: Yuxiong Wang



Model-Agnostic Meta-Learning (MAML)

• Meta-learning phase
– Use pool of tasks to obtain a good 

parameter initialization
– Learn from the "experience of learning"

• Adaptation phase
– Use few samples and optimization steps to 

adapt to new task
– New task can be outside the task pool used 

in meta-learning

47
Slide credit: Yuxiong Wang



Find gradient step(s) to 
improve parameters for 
each few-shot task

Update parameters so 
that those update steps 
reduce the loss as much 
as possible for all tasks



MAML is “learning to learn” – it learns parameters that are close 
to good parameters for many classification tasks, so that new 
tasks can be learned from a few examples and optimization steps



Methods for Domain Adaptation
• Instance translation

– Transform target-domain data into source-domain

• Domain adversarial training
– Align source-domain and target-domain feature spaces

54
Slide credit: Yuxiong Wang



Instance Translation
• Use generative models (e.g., CycleGAN by Zhu et al. ICCV '17) 

to create instances

• Look like source domain but preserve same target domain 
content

• Then feed source-like instances into source-domain model ✅

55
Slide credit: Yuxiong Wang



Instance Translation
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CycleGAN by Zhu et al. ICCV 
'17

Slide credit: Yuxiong Wang



Domain Adversarial Training
• Proposed by Ganin et al. JMLR '17

• Goal: Learn a domain-invariant model
– Model produces features that do not change with domain shift
– Only reflect contents about labels, but not domain characteristics

57
Slide credit: Yuxiong Wang



Domain Adversarial Training
• Attach a domain classifier network and apply adversarial training
• Aim of domain classifier: To distinguish source vs. target domains 

58
Slide credit: Yuxiong Wang



Domain Adversarial Training
• Aim of main network: 1) Correctly predict label of source-

domain data;

59
Slide credit: Yuxiong Wang



Domain Adversarial Training
• Aim of main network: 1) Correctly predict label of source-

domain data; 2) Using features that cannot distinguish 
between source and target domains

60
Slide credit: Yuxiong Wang



Domain Adversarial Training
• Adversarial training: Domain classifier 𝜃𝜃𝑑𝑑 minimizes

discrimination loss 𝐿𝐿𝑑𝑑, while main network's feature extractor
𝜃𝜃𝑓𝑓 maximizes 𝐿𝐿𝑑𝑑

61

Adversarial training is 
implemented by 

reversing gradients here

Slide credit: Yuxiong Wang



Domain Adversarial Training
• One mainstream of domain adaptation

– Various follow-up methods study how to better learn domain-
invariant models or feature representations

• Other ideas (may be combined with domain adversarial 
training)
– Instance translation
– Pseudo-labeling and self-training
– Domain randomization

62
Slide credit: Yuxiong Wang



Summary
• Task adaptation for changed task objective

– Transfer learning
– Meta-learning

• Domain adaptation for changed data distribution
– Instance translation
– Domain adversarial training

72
Slide credit: Yuxiong Wang



Coming up
• Thursday: Ethics and Impact of AI
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