
Building an ML
Application
and Transfer
Learning
Applied Machine Learning
Derek Hoiem

Dall-E

Today’s lecture

• Review a few exam questions

• Example of building an ML application

• Transfer learning

Exam
• Well done!

False: It’s possible (and common) for a method to achieve low/zero training error, but still perform badly in
testing, especially if the training examples are few compared to the model size

(a): The parameters optimize the objective for the training data, so evaluation on the training data is a
strongly biased optimistic estimate of performance, and is not a good indicator of expected performance
for future examples

(c) The trees are independently trained (a) All features are used to train each tree

(b) x=3y~=3 for regression and
nearest neighbor

False: The weight update is not sampled randomly from a uniform distribution, but computed
from a random sample of data. Also, SGD does not proceed by checking whether an update
decreases the loss -- it just takes a step according to the loss gradient for that mini-batch.

False: Sigmoid activations are very non-linear. The problem is that the gradient
is always less than 1 and often very small, so with many layers, the gradient
becomes negligible.

We’ve covered a lot of ground in deep networks

• ReLU activations, residual connections, and improved
optimization techniques enabled training arbitrarily large
and deep models

• Transformers provide a general and scalable way to process
many kinds of data

• Training on large annotated datasets or even larger
unannotated datasets yields impressive models that are
useful for many applications

How do you make your own ML application?
Example: Safety inspector wants to know what fraction of
workers are wearing helmets, gloves, and boots on each job site

• PPE use is low (e.g., 60% use in a study in Egypt; frequent lack of use in US and other countries too)
• 1,008 fatal and 174,100 non-fatal injuries in US construction in 2020
• Consistently using PPE would significantly reduce injury and sometimes death

Image src

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809954/
https://www.solutionsgc.com/safe-work-environment/

Step 1: Propose a solution in more technical terms
Proposed solution: Process images from the job site to detect the
workers and count what fraction of detected workers are
wearing each item

Left Glove: No
Right Glove: No
Hard hat: Yes
Vest: Yes
Boots: Yes

Step 1: Propose a solution in more technical terms
Main ML problem: Given an image, detect each worker and
whether each detected worker is wearing: (a) glove on left hand;
(b) glove on right hand; (c) boots; (d) hard hat; (e) vest

Note: There are lots of other aspects to the problem that we won’t consider in this example
• How to get images onto a server where we can process them
• How to avoid duplicate counts when the same person is in more than one image on the same day
• How to summarize results and report them to the safety inspector

src
src

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.constructionbusinessowner.com%2Fconstruction-safety%2Fassessing-your-companys-safety-strategies&psig=AOvVaw2l312jCozqL-hcCQK27PfA&ust=1679161021214000&source=images&cd=vfe&ved=0CBEQ3YkBahcKEwioqOu4wOP9AhUAAAAAHQAAAAAQEw
https://www.constructionbusinessowner.com/construction-safety/assessing-your-companys-safety-strategies

Step 2: Decide how to measure success
• What matters?

– We want the overall estimate of
fraction of workers wearing each
item to be accurate

– We want to report specific
instances of workers not wearing
an item, so that they can be
checked as problematic or not

Step 2: Decide how to measure success
• Key aspects of performance

– Human detection performance
• Do we care about “small” or heavily occluded

workers?
• What counts as correct? (maybe high overlap

in bounding boxes)
• Measure precision (fraction of detections that

are correct) and recall (fraction of workers
that are detected)

• Can measure Precision and Recall for each
level of confidence and generate a P-R curve

• Common overall performance measure is
average precision

• We may care about recall at a high precision
value because we don’t care about counting
the number of workers, just knowing how
likely a worker is to wear PPE

src

src

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.dreamstime.com%2Fstock-footage-busy-construction-site-time-lapse-video-panning-video64668813&psig=AOvVaw1DiJbv77WNv2uYNvv2m4XY&ust=1679161548507000&source=images&cd=vfe&ved=0CBEQ3YkBahcKEwjQzeq2wuP9AhUAAAAAHQAAAAAQAw
https://github.com/ultralytics/yolov3/issues/898

Step 2: Decide how to measure success
• Key aspects of performance

– Human detection performance
– Apparel classification performance,

for correctly detected humans and
each item:

• TP rate: fraction of actual items that
are detected

• FP rate: fraction of item detections
that are false

• Summarize with equal error rate,
accuracy when confidence is set so
that FP rate = (1- detection rate)

EER

Step 2: Decide how to measure success
• Key aspects of performance

– Human detection performance
– Apparel detection performance, for correctly detected humans

and each item
– Overall: Deviance between the estimated fraction of workers

wearing equipment from the true fraction over a set of images
• Difference in fractions
• Bias: tends to overcount or undercount
• Variance: how much could the difference be expected to vary, given a

particular number of images

Step 3: collect and annotate validation/test images

1. Collect images
– Should be the same kind of images that will be processed in deployment
– Collect from a variety of sites and different dates. Try to get representative diversity

2. Annotate
– Draw boxes around each worker, even very small and hard to detect ones
– For each PPE item, label “present”, “absent”, or “not visible”
– How to get annotations

• In house:
– Use open source tool, such as VGG image annotator, or commercial tool like LabelBox
– Develop custom tool (e.g. to process 360 images or fully integrate into existing application)

• Outsource:
– Amazon Mechanical Turk or other crowdsourcing tool
– Commercial service

• In this case, creating a small initial development validation set in-house and larger set by
outsourcing could make sense

3. Split into a validation set and test set

https://www.robots.ox.ac.uk/%7Evgg/software/via/

Step 4: Determine technical details of approach
• For this example, we’ll base the approach on Mask-RCNN

Detects objects and person keypoints

Includes additional branch to
detect person keypoints

Modifications
• Remove bounding box detections and masks for non-

person objects
• Add classification layer to keypoint branch to classify

• Wearing left glove
• Wearing right glove
• Wearing hard hat
• Wearing boots
• Wearing safety vest

Step 5: Collect training data
• Consider combination of existing data (with applicable

licenses) and new data
• Existing

– Papers with code
– Google for existing papers/datasets, e.g.

• Collect own data
– similar to collecting test/validation, but not quite as much concern

about being representative or reflecting actual use cases
– E.g., could ask job sites to send photos of workers wearing and not

wearing PPE (on purpose, briefly) while in natural poses

https://paperswithcode.com/datasets?mod=images&task=pose-estimation
https://github.com/ZijianWang1995/PPE_detection

Step 6: Develop model

• Whenever possible, start
with a pretrained model

• Alternatively, you could
use unsupervised
pretraining to initialize
your model (e.g. Masked
Autoencoder)

(from Chat GPT)

https://huggingface.co/models

https://huggingface.co/models

Step 6a: Develop model: establish baselines
• Run the model as-is on your validation data and

measure human detection performance

• Train a linear probe for classifying PPE item
presence and measure all performance metrics

• Manually validate your evaluation code by
displaying images and detections and checking
against metrics

Step 6b: Develop model: refine model
• Fine-tune the model on your

data
• Train using mix of existing and

application-specific data
– Apply only the losses that are

applicable (e.g. detection or
pose only for some datasets)

• Use tools like TensorBoard or
Weights and Biases to
monitor training and compare
results
– Always plot validation and

training loss, and measure
validation performance at
training milestones

src

https://huggingface.co/autotrain

https://www.researchgate.net/figure/Multi-head-model-left-and-singlehead-model-right-In-the-multi-head-model-the-output_fig2_350088197
https://huggingface.co/autotrain

Step 7: Evaluate on test set
• Measure performance metrics and characterize when it works

and doesn’t
– As function of occlusion, person size, camera viewpoint, etc

Step 8: Integrate into application

• Beta test in complete workflows

• Write guides for when it works and doesn’t

• Improve efficiency, refine approach

Summary of how to build a new ML application
1. Identify problem and general approach to solution

– This also involves thinking ahead to metrics, available models, data, and more, to ensure viability
2. Specify success metrics

– Check with product managers and/or users to ensure these metrics reflect important performance
characteristics

– Often, the metrics can’t be optimized directly
3. Create evaluation sets

– Achieving targets for success metrics on these sets should indicate high likelihood of application success
4. Select model, objectives, and other design details

– Usually this involves finding an analogous approach that has been successful
5. Collect data for training

– Custom data and labeling is expensive and time-consuming, so exploit available data sources where
available, and as allowed by license terms

6. Develop model, starting with baselines and simple approaches
– Starting simple is critical so that it is easier to debug and validate changes

7. Evaluate on your test set
– It’s not just about the performance number, but about predictability and effectiveness within the

application
8. Integrate into the application

– This requires a lot of work and testing

2 minute break

Thank you to Yuxiong Wang for following slides on
domain adaptation and transfer learning!

Challenge for Machine Learning Models

• Development and real-world application may face different
scenarios

• Limiting model performance and reliability

29

Curated
Dataset for

Development

Trained
ML Model

Real-world
Setting

Questionable
Performance

Slide credit: Yuxiong Wang

Types of Shifts
• Mainly two types of shifts from one scenario to another:

Task shift Domain shift

30
Slide credit: Yuxiong Wang

Task Shift: Changed Model Objectives

31

Classifying dogs and cats
Source (Old) Task

Classifying squirrels and birds
Target (New) Task

Slide credit: Yuxiong Wang

Domain Shift: Changed Input Data Distributions

32

Classifying dogs and cats in studio
Source (Old) Domain

Classifying dogs and cats on grass
Target (New) Domain

Slide credit: Yuxiong Wang

Types of Shifts: Task or Domain?

• Task shift
– Objective of model is changed
– But data distributions are usually assumed similar or related

• Domain shift
– Input data come from changed distributions
– But model task usually remains the same

33
Slide credit: Yuxiong Wang

Overcoming Task/Domain Shift

34

Curated
Dataset for

Development

Trained
ML Model

Real-world
Setting

Questionable
Performance

Adapted
ML Model

Real-world
Setting

Improved
Performance

Slide credit: Yuxiong Wang

Overcoming Task/Domain Shift

• Task shift
– Changed task objective

• Domain shift
– Changed data distribution

• Some adaptation ideas may be applicable for both (e.g., Meta-
learning)

• Task adaptation
– Transfer learning
– Meta-learning

• Domain adaptation
– Instance translation
– Domain adversarial training

35
Slide credit: Yuxiong Wang

Application: Autonomous Driving
• Adapt to different weather conditions, lighting conditions, or

driving environments

36

Normal Weather Condition Foggy Weather Condition

Images from Sakaridis et al. IJCV '18
Slide credit: Yuxiong Wang

Application: Robotics
• Adapt from simulated environment to real-world robotic

systems, or adapt from one learned task to another

37Images from Google Research, 2020
Slide credit: Yuxiong Wang

Application: Speech recognition
• Adapt to different accents, speaking styles, or environmental

conditions

• Example: Model trained with American English could be
adapted to British English by fine-tuning on new domain

38
Slide credit: Yuxiong Wang

Methods for Task Adaptation
• Transfer learning: Pre-training and fine-tuning

• Meta-learning: Model-Agnostic Meta-Learning (MAML) and
variants

39
Slide credit: Yuxiong Wang

Transfer Learning
• Goal: To reuse knowledge learned from one task (which

usually has abundant supervisory information), to another
related task

• Implementation is simple
– "Pre-train" model on source task
– Copy learned weights from learned model
– "Fine-tune" new model on target task

40
Slide credit: Yuxiong Wang

Transfer Learning

41

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize
weights

Slide credit: Yuxiong Wang

Transfer Learning
• Step 1: Pre-train Model 1 on Task 1

42

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize
weights

Slide credit: Yuxiong Wang

Transfer Learning
• Step 2: Initialize weights using learned Model 1

43

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize
weights

Slide credit: Yuxiong Wang

Transfer Learning
• Step 3: Fine-tune Model 2 on Task 2

– Backbone may use a smaller learning rate or even be "frozen"

44

Model 2

Model 1

Task 1 Data Backbone Head Task 1 Outputs

Task 2 Data Backbone New Head Task 2 Outputs

Initialize
weights

Slide credit: Yuxiong Wang

Model-Agnostic Meta-Learning (MAML)
• Proposed by Finn et al. ICML '17

• Goal: To learn a good parameter initialization that can be
quickly adapted to new tasks

• Model-agnostic: Can be applied to any differentiable model
– Flexible, can be used in a wide range of applications
– Including computer vision, natural language processing, and robotics

45
Slide credit: Yuxiong Wang

Model-Agnostic Meta-Learning (MAML)
• Assumption and setting

– Have a pool of various tasks
– Each task contains a set of training/validation samples

• An example of task pool
– Classify Dogs into Shepherd, Labrador, Golden, Husky ...
– Classify Cat into Siamese, Maine, Persian, Shorthair ...
– Classify Bird into Canary, Parrot, Dove, Sparrow ...

46
Slide credit: Yuxiong Wang

Model-Agnostic Meta-Learning (MAML)

• Meta-learning phase
– Use pool of tasks to obtain a good

parameter initialization
– Learn from the "experience of learning"

• Adaptation phase
– Use few samples and optimization steps to

adapt to new task
– New task can be outside the task pool used

in meta-learning

47
Slide credit: Yuxiong Wang

Find gradient step(s) to
improve parameters for
each few-shot task

Update parameters so
that those update steps
reduce the loss as much
as possible for all tasks

MAML is “learning to learn” – it learns parameters that are close
to good parameters for many classification tasks, so that new
tasks can be learned from a few examples and optimization steps

Methods for Domain Adaptation
• Instance translation

– Transform target-domain data into source-domain

• Domain adversarial training
– Align source-domain and target-domain feature spaces

54
Slide credit: Yuxiong Wang

Instance Translation
• Use generative models (e.g., CycleGAN by Zhu et al. ICCV '17)

to create instances

• Look like source domain but preserve same target domain
content

• Then feed source-like instances into source-domain model ✅

55
Slide credit: Yuxiong Wang

Instance Translation

56

CycleGAN by Zhu et al. ICCV
'17

Slide credit: Yuxiong Wang

Domain Adversarial Training
• Proposed by Ganin et al. JMLR '17

• Goal: Learn a domain-invariant model
– Model produces features that do not change with domain shift
– Only reflect contents about labels, but not domain characteristics

57
Slide credit: Yuxiong Wang

Domain Adversarial Training
• Attach a domain classifier network and apply adversarial training
• Aim of domain classifier: To distinguish source vs. target domains

58
Slide credit: Yuxiong Wang

Domain Adversarial Training
• Aim of main network: 1) Correctly predict label of source-

domain data;

59
Slide credit: Yuxiong Wang

Domain Adversarial Training
• Aim of main network: 1) Correctly predict label of source-

domain data; 2) Using features that cannot distinguish
between source and target domains

60
Slide credit: Yuxiong Wang

Domain Adversarial Training
• Adversarial training: Domain classifier 𝜃𝜃𝑑𝑑 minimizes

discrimination loss 𝐿𝐿𝑑𝑑, while main network's feature extractor
𝜃𝜃𝑓𝑓 maximizes 𝐿𝐿𝑑𝑑

61

Adversarial training is
implemented by

reversing gradients here

Slide credit: Yuxiong Wang

Domain Adversarial Training
• One mainstream of domain adaptation

– Various follow-up methods study how to better learn domain-
invariant models or feature representations

• Other ideas (may be combined with domain adversarial
training)
– Instance translation
– Pseudo-labeling and self-training
– Domain randomization

62
Slide credit: Yuxiong Wang

Summary
• Task adaptation for changed task objective

– Transfer learning
– Meta-learning

• Domain adaptation for changed data distribution
– Instance translation
– Domain adversarial training

72
Slide credit: Yuxiong Wang

Coming up
• Thursday: Ethics and Impact of AI

	Building an ML Application and Transfer Learning
	Today’s lecture
	Exam
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	We’ve covered a lot of ground in deep networks
	How do you make your own ML application?
	Step 1: Propose a solution in more technical terms
	Step 1: Propose a solution in more technical terms
	Step 2: Decide how to measure success
	Step 2: Decide how to measure success
	Step 2: Decide how to measure success
	Step 2: Decide how to measure success
	Step 3: collect and annotate validation/test images
	Step 4: Determine technical details of approach
	Step 5: Collect training data
	Step 6: Develop model
	Step 6a: Develop model: establish baselines
	Step 6b: Develop model: refine model
	Step 7: Evaluate on test set
	Step 8: Integrate into application
	Summary of how to build a new ML application
	2 minute break
	Thank you to Yuxiong Wang for following slides on domain adaptation and transfer learning!
	Challenge for Machine Learning Models
	Types of Shifts
	Task Shift: Changed Model Objectives
	Domain Shift: Changed Input Data Distributions
	Types of Shifts: Task or Domain?
	Overcoming Task/Domain Shift
	Overcoming Task/Domain Shift
	Application: Autonomous Driving
	Application: Robotics
	Application: Speech recognition
	Methods for Task Adaptation
	Transfer Learning
	Transfer Learning
	Transfer Learning
	Transfer Learning
	Transfer Learning
	Model-Agnostic Meta-Learning (MAML)
	Model-Agnostic Meta-Learning (MAML)
	Model-Agnostic Meta-Learning (MAML)
	Slide Number 50
	Slide Number 51
	Methods for Domain Adaptation
	Instance Translation
	Instance Translation
	Domain Adversarial Training
	Domain Adversarial Training
	Domain Adversarial Training
	Domain Adversarial Training
	Domain Adversarial Training
	Domain Adversarial Training
	Summary
	Coming up

