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Remember from last class

Sub-wprd .tokenlzathn based on byte-pair Chair is broken =
encoding is an effective way to turn natural  ch##, ##air, is, brok##, ##en

text into a sequence of integers

Learned vector embeddings of these
integers model the relationships between
words

Input

Paris — France
+ Italy = Rome

(k,a,v) iterl iter2 iter3 iter4

1.000 1.497 1.818

Attention is a general processing oo
. . 8.503 8.182
mechanism that regresses or clusters values  sowo s12s s1m

2.000 1.872 1.859

Stacked transformer blocks are a powerful
network architecture that alternates
attention and MLPs

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/
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http://nlp.seas.harvard.edu/annotated-transformer/

Language Transformer: Complete Architecture

Cutput

Probabilities
. . t
* WordPiece tokens (integers) are o)
mapped to learned 512-d vectors e )
T . F[ orm ]4—\1\
* Positional encoding added to each —
Forward
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. r(_ﬂ — &INOrm ]"\ (Add & Norm J+= |cross-
* N=6 transformer blocks applied to = Wi heag | | [Atenton
input Forward [‘:\dd:r\l }l‘-\ N x
* Until <EOS> is output: il Figg FEFITEN Vasked ] | [Sef-
Self- Multl—H_ead Multi—Hgad Attention
—_ Process |nput + Output SO far Attention &ﬂﬂi) tAttentlon)
— Output most likely word (after more Sosiion ) h i
. . odi (9—(*- F .
attention blocks and linear model) Feodng St O:f;® Encoding
Embr;]dding Embegding
I

Inputs Outputs
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https://arxiv.org/abs/1706.03762

Application to Translation

* English-German
— 4.5M sentence pairs
— 37K tokens
* English-French
— 36M sentences
— 32K tokens

e Base models trained on 8 P100s for 12
hours

* Big models (2x token dim, 3x training steps)
trained for 3.5 days

 Adam optimizer: learning rate ramps up for
4K iterations, then down

* Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need
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https://arxiv.org/abs/1706.03762

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Mod BLEU Training Cost (FLOPs)
odel EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 102
GNMT + RL [38] 24.6 39.92 2.3-10  1.4-102°
ConvS2S [9] 25.16 40.46 0.6-10%  1.5.102°
MokE [32] 26.03 40.56 2.0-10¥  1.2-102Y
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%°  1.1-10%t
ConvS2S Ensemble [9] 26.36 41.29 771012  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 23.1019




Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:

sentence. We give two such examples above, from two different heads from the encoder self-attention

at layer 5 of 6. The heads clearly learned to perform different tasks.

Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5

and 6. Note that the attentions are very sharp for this word.



Today’s Lecture

 BERT: Large Language Model

— Language model

e ViT (Vision Transformer): Image classification

* Unified-10: Sequence-to-sequence vision-language



BERT (Devlin et al. 2019)

—

\ | MNLI{/@RFAQUAD StartEnd Span \
| f f

a—a—a
e ln) - o )Ceen [ ) -

A‘SP Mask LM Mask LM
[ & o *

37 . S €7
..... Pt
BERT

.-. -------------- .. -- .-..: " . . BERT

Bos || By | - Ev || Bsem || B Ey B || B Ew Een || Ey Ey
o o o P T o o o
- | LI 1| LI L] — L1 L L L L] L
P # ra o o * ¢ 9 “ Py S ¢ “ Py S
[CLs Tok1 | ., Tok N [SEF] Tok1 | |, TokM [cLs] Tok 1 Tok N [SEP] Tok 1 TokM

*

1. Masked Sentence A - Masked Sentence B | \ \ \ Question Paragraph
\ Unlabeled Sentence A and B Pair / \ \_H \ Question Answer Pair /

Pre-training Fine-Tuning
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https://arxiv.org/abs/1810.04805

Why is BERT worth knowing about? (according to Chat GPT)

BERT (Bidirectional Encoder Representations from Transformers) is worth knowing about because it
represents a significant breakthrough in natural language processing (NLP) technology.

Before BERT, NLP models typically processed text in a unidirectional manner, meaning they would only
look at words to the left or right of the target word to try to understand its meaning. BERT, on the
other hand, is a bidirectional model, which means it considers the entire context of a word, including
the words that come before and after it. This allows BERT to better understand the meaning of a
sentence and make more accurate predictions about what might come next.

BERT is also pre-trained on large amounts of text data, which allows it to generate high-quality,
contextually relevant representations of words and phrases. These pre-trained models can then be
fine-tuned on specific NLP tasks, such as sentiment analysis, question answering, or language
translation, to achieve state-of-the-art results.

Overall, BERT has revolutionized the field of NLP and has led to significant improvements in language
understanding and natural language generation tasks. As such, it is an important technology to be
aware of for anyone working in NLP or interested in the development of artificial intelligence more
broadly.



Overview of BERT

* Uses standard transformer blocks
— Base: 12 layers, 768-dim, 12 heads; 110M parameters
— Large: 24 layers, 1024-dim, 16 heads; 340M parameters
 WordPiece: 30K tokens
— Special [CLS] and [SEP] tokens

— Positional and sentence embeddings

* Pre-trained with masked language modeling (MLM) and next
sentence prediction

 Fine-tuned for other tasks



BERT: Input representation

N ™ Fa AN h s ™ # LY
Input [CLS] my dog is ( cute [SEP] he ( likes W( play W ##ing [SEP]
Token
Embeddings E['CLS] Em',r Edc-g Eis E L E[‘SEIZ’] Ehe Elk Epl ¥ E“ing E:SEF‘]
L L L L L L L L L L L
Segment
Embeddings EA EA EA EA EA EA EE! EB EB EB. EE!
L L L L L L L L L L L
FPosition
Embeddings ED E1 EE E3 E4 E5 Es E? EB EQ Em

 WordPiece: 30K tokens

— Specia
e [CLS]

* [SEP

tokens
at start to encode sentence summary
to separate sentences or question and answer

— Positional and sentence embeddings




Pre-training with masked language modeling (MLM)
~

\

 Randomly select 15% of text tokens ﬂ;p Mask LM Mask LM

to be “masked” and predicted by = LS

based on surrounding tokens G e 7 SR i
* Masked tokens are replaced by BERT

— [MASK] token (80% of the time) = e e e ¥

— Random token (10%) -ﬂ‘ & O 2,

— Unchanged token (10%) ﬂ? | IR e
. Only masked tokens are predicted Masked Sentence A - Masked Sentence B

\ Unlabeled Sentence A and B Pair
Pre-training

Masking

example:

4

[cls] My dog is cute [sep] He likes play ##ing [sep]

[cls] [MASK] dog is grave [sep] He likes play ##ing [sep]




Pre-training with next sentence prediction

* |Input is two sentences A and B

* Replace B with a random /N MaskLu ask Ly N\
sentence 50% of the time | ' . |

* Predict whether B is the
original sentence or not (via

[CLS] token)

| - E
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Masked Sentence A Masked Sentence B

* :
\ Unlabeled Sentence A and B Pair /

Pre-training




Pre-training and fine-tuning

* Pre-train on MLM and NSP tasks
— BooksCorpus: 800M words
— English Wikipedia: 2.5B words

— Important to use full documents, not just shuffled sentences
— BERTg ¢ trained on 16 TPU chips; BERT ,rge ON 64 chips; 4 days each

* Fine-tune on each task, takes a few hours on a GPU
— Paraphrasing

— Entailment
— Question answering



BERT results

SQuUAD: question

GLUE: General Language Understanding Evaluation — many tasks answering dataset

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average Sy stem Dev Test
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k - EM Fl1 EM FIl

Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 03.2 35.0 81.0 86.0 61.7 74.0

BiLSTM+ELMo+Atn  76.4/76.1 648 798 904 360 733 849 568 710 Top Leaderboard Systems (Dec 10th, 2018)

OpenAl GPT 82.1/81.4 703 874 913 454  80.0 823 560  75.1 Human - - 823 91.2

BERTgask 84.6/83.4 712 905 935 521 853 889 664 796 #1 Ensemble - nlnet - - 86.0 917

BERTLARGE 86.7/85.9 721 927 949 605 865 893  70.1 821 #2 Ensemble - QANet - - 845 905

‘ . Published

Table 1: GLUE Test results, scored by the evaluan‘on server (https: //gll;_lebeflf:}“_.l:na‘_’k. co1_"n/ lheaderb‘oqiard}. BiDAF+ELMo (Single) - 86 - 858

The numbfsl" be]ow each task {le!lotes the number of training ex‘amples. The “Average” column is slightly dlt?erem R.M. Reader (Ensemble) 8172 870 823 885

than the official GLUE score, since we exclude the problematic WNLI set.®* BERT and OpenAl GPT are single-

model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and Ours

accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components. BERTgask (Single) 80.8 88.5 - -

BERTLArGE (Single) 84.1 909 - -

) . . . BERTarGE (Ensemble) 85.8 91.8 - -
MNLI: whether a sentence entails, contradicts, or is unrelated to another BERT, arcr: (Sl +TriviaQA) $4.2 911 85.1 918

QQP: wheth.er two sent_ences are semantically equivalent BERTarGE (Ens+TriviaQA) 86.2 92.2 87.4 93.2
QNLI: question answering
SST-2: positive or negative sentiment

CoLA: whether sentence is grammatically correct Table 2:  SQuAD 1.1 results. The BERT ensemble
STS-B: sentence similarity score is 7x systems which use different pre-training check-
MRPC: whether one sentence paraphrases another points and fine-tuning seeds.

RTE: whether a sentence entails a hypothesis



Key Take-aways from BERT

* Bi-directional masked language modeling is highly effective
pre-training
— Does not require supervision

— Learns general representations

* Same idea has been adopted for vision, but with much higher
masking ratio (~¥80% of patches masked)



ViT: Vision Transformers (Dosovitskiy et al. 2021)
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https://arxiv.org/abs/2010.11929
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Why is ViT worth knowing about?

(Chat GPT answer was mostly accurate but not very
helpful)

1. Shows that the same exact Transformer blocks
can be used for vision, paving the way for
multimodal processing

2. Transformers work about as well as CNNs but are
more computationally efficient



ViT Overview

* |Image is divided into patches
(e.g., 16x16)

* Each patch projects into a fixed
length vector

e Positional encoding added to
each patch

e Extra [class] token to encode
Image summary

 Multiple layers of standard
transformer (same as for
language)

* For classification, final
prediction is linear layer
applied to [class] token

Vision Transformer (ViT)

i MLP
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Transformer Encoder
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Different size models,

Same model, different

Big convolutional

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

same pretraining pretraining dataset networks
Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student
(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +-0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+003 88.62+0.05 90.54 90.55
CIFAR-10 99.50+006 99.42+003 99.15+0.03 09.37 +0.06 -
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 03.51 +0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+011 94.67+0.15 06.62 +0.23 —
Oxford Flowers-102  99.68 +002 99.74+000 99.61+0.02 99.63 +0.03 -
VTAB (19 tasks) T7.63+023 76.28+046 7T2.72+021 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k
$30K $120K
80 B ViT-H/14  BEE BiT-L (R152x4) [ VIVI-Ex-100% (R50x3) BB S4L (R50x1)
S 88
=75
& 80 85 60
" 10N " 1B
: B
65 - 70 -- 30 50 .

VTAB (19 tasks)

Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

Natural (7 tasks)

Specialized (4 tasks)

Structured (8 tasks)

Table 1: Details of Vision Transformer model variants.



Information is integrated
among distant patches

RGB embedding filters
(first 28 principal components)

Position embedding similarity
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Figure 7: Left: Filters of the initial linear embedding of RGB values of ViT-L/32. Center: Sim-
ilarity of position embeddings of ViT-L/32. Tiles show the cosine similarity between the position
embedding of the patch with the indicated row and column and the position embeddings of all other
patches. Right: Size of attended area by head and network depth. Each dot shows the mean attention
distance across images for one of 16 heads at one layer. See Appendix D.7 for details.



CNNs vs. Transformers

CNNs encode position as an index in the feature map. Transforms do not care about index
order but encode positional embeddings

- Surprisingly, even when positional embeddings are not used, transformer models still work well

CNNs encode a bias that nearby pixels are most related

— Transformers enable combining information from distant patches, with positional embedding
providing a weak prior to consider nearby patches

— CNNs can only use information in neighboring pixels/cells, but the receptive field (pixel area
considered) grows larger as network gets deeper

In practice, CNNs and Transformers perform similarly for pure vision tasks, but Transformers
are faster to train

— Hybrids are possible, e.g. apply shallow CNN before first patch embedding

Transformers operate on “tokens”, which is very general and can be applied to any modality



Unified-10: <text, image> to <text, image> (Lu et al. 2022)

3B parameters

Pre-train on masked
text and image
completion for text,
images, and
image/caption pairs

Multitask training
on 80 datasets

Unified-10 (June 2022)

https://unified-io.allenai.org/
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https://unified-io.allenai.org/

What is the
complete image?
Segmentation color:
“white: knob, silver-
cupboard, olive:
drawer, lime __.*

{14
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Vision tasks
e Image synthesis from text / Whatobyecsaro

inpainting / segmentation - 0¢84T loc109% bicycle
e Image/object classification —
e Object detection,

loc100 loc7 45 locd 95
loc?91 chair loc293
loc100 loc?53 loc7 &3
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segmentation, keypoint o
estimation Lo =)
e Depth/normal estimation Cenple'? *la
Vision-language tasks
e VQA, image/region
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NLP tasks 1 -
e Question answering Tﬂff?}”mdmﬁg |3
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State-of-Art on GRIT

Categorization Localization VOQA

Refexp

Segmentation

Keypoint

Normal

All

ablation test ablatton test ablation test ablation test ablation test ablation

test ablation test ablation test

0 NLL-AngMF[3] - ; ; ; _ _ ; ; i ; _ - 496 505 72 7.1
1 Mask R-CNN[29] - . 447 451 - - i . 262 262 708 706 - . 202 203
2 GPV-1[26] 332 332 428 427 506 498 258 268 - ; _ _ i . 218 218
3 CLIP [56] 48.1 ; ; ; ; ; ; ; i ; ; ; i . 69 -
4 OFA pazce [73] 26 - ; . 724 - 617 - i ; ; ; i . 04
5 GPV-2 [36] 547 551 536 536 635 632 515 521 - ; ; ; i ~ 319 320
6 UNIFIED-IOswar 426 - 504 - 529 - 511 - 407 - 465 - 335 - 454 -
7 UNIFIED-T0gper  53.1 . 597 - 630 - 683 - 493 - 602 - 315 - 559 .
¢ UNIFIED-I0 5c: 570 - 642 - 674 - 741 - 540 - 616 - 402 - 510 -
5 UNIFIED-10x 61.7 608 67.0 67.1 745 745 786 789 563 565 681 677 450 443 645 64.3

Table 1: Comparison of our UNIFIED-1O models to recent SOTA on GRIT benchmark. UNIFIED-1O is the

first model to support all seven tasks in GRIT.

27



Often performs similarly or better than SotA single-task models

=
5
7] 'y — S ::v'f 5 & ) _
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= £ & < = ol = = S o 7 o o S ~
o~ =7 X} o < J N o E— & ] O O & S 5
= £ & = S < = = s 5 5 =2 O O = 5 &
Split val val  wval test-dev test test  test-dev test-std  test wval val val val test val val test
Metric RMSE  Acc. Acc. Acc Acc. Acc. Acc. [OU Acc. Acc. CIDEr CIDEr CIDEr CIDEr Fl Acc Acc
Unified SOTA UViM - - - Flamingo -  Flamingo - - - - - - - T5 PalLM -
0.467 - - - 57.8 - 49.8 - - - - - - - 92.20 922 -
UNIFED-10zm. 0.649 428 382 577 31.0 24.3 42.4 35.5 17.3 76.5 - 45.1  80.1 - 84.9 63.9 87.4
UNIFIED-1Ozaze 0.469 633 432 618 37.8 28.5 45.8 50.0 29.7 856 - 66.9 104.0 - 87.9 70.8 90.8
UNIFIED-101a7:2 0.402 71.8 505 678 42.7 334 417 547 404 Be.l - 87.2 117.5 - 81.5 73.1 93.1
UNIFIED-10y;, 0.385 79.1 532 779 54.0 45.2 574 65.0 498 01.1 212 1000 1268 1223 89.2 79.7 95.7
Single or fine- BinsFormer CoCa MAE CoCa KAT GPV2 Flamingo MAC-Caps JSL OFA SVT CoCa - OFA  Turning NLR ST-MOE DeBERTa
tuned SOTA 0.330  91.00 0.3 823 544 38.1 635.7 21.3 39.6 91.0 183 1224 - 145.3 93.8 924 97.7
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Explore demo

https://unified-io.allenai.org/



https://unified-io.allenai.org/

HW 3

https://docs.google.com/document/d/1f307RKvBKk1n15alSehYRxCHCh-
ExPaDN6ljgapgwO0aY/edit?usp=sharing



https://docs.google.com/document/d/1f3O7RKvBKk1n15aISehYRxCHCh-ExPaDN6Ijqpgw0aY/edit?usp=sharing
https://docs.google.com/document/d/1f3O7RKvBKk1n15aISehYRxCHCh-ExPaDN6Ijqpgw0aY/edit?usp=sharing

Things to remember

* Transformers are general data processors,
applicable to text, vision, audio, control, and
other domains

* Pre-training to generate missing tokens in
unsupervised text data learns a general
model that can be fine-tuned

- Same idea is also applicable to other domains

 Transformer architectures are state-of-art for
vision and language individually

e Arguably, the biggest benefit of transformers
is ability to combine information from
multiple domains

ﬁp Mask LM Mask LM \
> b o

BERT

,

Masked Sentence A Masked Sentence B

( [SEP] o
~
Unlabeled Sentence A and B Pair

Pre-training

Transformer Encoder

Embedded
Patches




Next class: Foundation Models

+ GPT-3
+ CLIP
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