
CNNs and
Computer
Vision
Applied Machine Learning
Derek Hoiem

Dall-E

You are here!

Today’s Lecture
• ImageNet Challenge Overview
• ResNet model in more detail
• Adapting a pre-trained network to new tasks
• Mask-RCNN line of detection/segmentation
• U-Net Architecture

Slide source

https://www.cs.princeton.edu/courses/archive/spr18/cos598B/slides/cos598b_7feb18_imagenet.pdf

0

5

10

15

20

25

30

35

40

Er
ro

r

2012 ImageNet 1K
(Fall 2012)

Slide: Jia-bin Huang

AlexNet

AlexNet: ILSVRC 2012 winner

• Similar framework to LeNet but:
• Max pooling, ReLU nonlinearity
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

ResNet: the residual module

• Use skip or shortcut
connections around 2-3
layer MLPs

• Gradients can flow
quickly back through skip
connections

• Each module needs only
add information to the
previous layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper), 150K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: Residual Bottleneck Module

• Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K
operations

• Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper)

Used in 50+ layer networks

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: going real deep

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

Despite depth, the residual connections enable error
gradients to “skip” all the way back to the beginning

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet CNN Components
• Conv2d: learned 2D convolutional filters (same linear weights

applied to a patch surrounding each pixel)
• BatchNorm2D: Convolutional batch normalization (see next

slide)
• ReLU: non-linearity with gradient={0,1}
• Linear layer: feature projection / final linear classifier

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

• During training, the feature
distribution at intermediate
layers keep changing as the
network learns

• This destabilizes training
• BatchNorm normalizes features

of each mini-batch according to
its mean and variance and
learned parameters 𝛾𝛾, 𝛽𝛽

• Using BatchNorm often
improves speed and
effectiveness of training

http://arxiv.org/pdf/1502.03167v3.pdf

Example code: ResBlock
class ResBlock(nn.Module):

def __init__(self, in_channels, out_channels, downsample):
super().__init__()
if downsample:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.shortcut = nn.Sequential(

nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2),
nn.BatchNorm2d(out_channels)

)
else:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.shortcut = nn.Sequential()

self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, input):
shortcut = self.shortcut(input)
input = nn.ReLU()(self.bn1(self.conv1(input)))
input = nn.ReLU()(self.bn2(self.conv2(input)))
input = input + shortcut
return nn.ReLU()(input) This ‘+’ is the skip connection!

If downsampling, do it here too so dimensions match

“channels” = # feature maps
kernel_size = filter size, e.g. 3x3
stride = # pixels to skip when evaluating convolution
padding: to calculate filter values near edge of image/map

Example code: ResNet-18 architecture for ImageNet
class Network(nn.Module):

def __init__(self, num_classes=1000):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input

Pretrained Torch models

https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md

ResNet Architectures and Results

(vs. 15% top-5 err for AlexNet)

Another common trick: “data augmentation”

• Randomly translate, crop, rotate, mirror, shift colors, or overlay
images to create more variations
– Apply random transformation to each sample in each batch as it is

processed in training
– Simulates a larger training set, and makes it so that the network will

learn from variations of the original example in each epoch

• Can improve performance, even with fairly large datasets

Data Augmentation (Jittering)

• Create virtual training
samples
– Horizontal flip
– Random crop
– Color casting
– Geometric distortion

• Idea goes back to
Pomerleau 1995 at
least (neural net for
car driving)

Deep Image [Wu et al. 2015]

Slide: Jiabin Huang

http://arxiv.org/pdf/1501.02876v2.pdf

Applying Data Augmentation

References:
https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

1. Define transformation sequence
2. Input transform specification to data loader

https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

What if we want to do some new task?
• Suppose we’ve trained ImageNet model
• But we want to do something else, e.g. classify flowers or dog

breeds
• We don’t have a huge dataset for that task

Encoder DecoderInput
Image

E.g. weights of
convolutional layers,
trained on ImageNet

E.g. final 1000 class
linear layer weights

Output 1000 Class
Logits

ImageNet Trained Model

New Task Solution 1: “Linear probe” / “Feature extraction”

Encoder
(Frozen)

Decoder
(Tuned)

Input
Image

Output Nc Class
Logits

ImageNet Trained Encoder
New Task Decoder

Keep original encoder weights. Replace decoder linear layer
and train its weights on new task without changing encoder.

Equivalently, extract features from encoder and train linear
model on those features

Pre-trained
Model

Target
Model

How to apply linear probe
Pre-compute features method
1. Load pretrained model (many

available)
https://pytorch.org/vision/stable/m
odels.html

2. Remove prediction final layer
3. Apply model to each image to

get features; save them
4. Train new linear model (e.g.

logistic regression or SVM) on
the features

Freeze encoder method
1. Load pretrained model (many

available)
https://pytorch.org/vision/stable/m
odels.html

2. Set network to not update
weights

3. Replace last layer
4. Retrain network with new

dataset
- Slower than method on left but
does not require storing features,
and can apply data augmentation

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6

New Task Solution 2: “Fine-tuning”

Encoder
(Fine-tuned)

Decoder
(Tuned)

Input
Image

Output Nc Class
Logits

New Task Encoder
New Task Decoder

1. Initialize with original encoder weights.
2. Replace decoder linear layer.
3. Use 10x smaller learning rate than normal and train

Pre-trained
Model

Target
Model

How to apply fine-tuning
1. Load pre-trained model
2. Replace last layer
3. Set a low learning rate (e.g. lr=e-4)

– Learning rate is often at least 10x lower than for “scratch” training
– Can “warm start” by freezing earlier layers initially and then unfreezing

after a few epochs when the linear layer is mostly trained (avoids messing
up encoder while classifier is adjusting)

– Can set lower learning rate for earlier layers

Other examples of layer customization (from Weijie)

Assumes last layer has 512 features and is called “fc”

https://colab.research.google.com/drive/1x47sniwTl18bZeQEjY9JjHzPnnk7Bo72?usp=sharing

Task transfer vs. # target task examples

“Learning Curves” (2021) pdf

Green: Train from scratch
Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet
ResNet18, Err vs # examples / class (in paren)

https://arxiv.org/abs/2010.11029

2 Minute Break
• Comparing linear probe, fine-tuning, and training from scratch,

when does each have an advantage and why?

Statistical template approach to object detection
Propose
Window

Sliding window: scan
image pyramid

Region proposals:
edge/region-based,
resize to fixed window

Extract
Features

HOG

CNN features

Fast randomized features

Classify

SVM

Boosted stubs

Neural network

Post-
process

Non-max
suppression

Segment or
refine
localization

R-CNN (Girshick et al. CVPR 2014)

• Extract regions using Selective Search method (Uijilings et
al. IJCV 2013)

• Extract rectangles around regions and resize to 227x227
• Extract features with fine-tuned CNN (that was initialized

with network trained on ImageNet before training)
• Classify last layer of network features with SVM

http://arxiv.org/pdf/1311.2524.pdf

http://arxiv.org/pdf/1311.2524.pdf

Fast R-CNN – Girshick 2015

• Compute CNN features for image once
• ROI Pooling: Pool into 7x7 spatial bins for each region proposal,

output class scores and regressed bboxes
• Other refinements: compress classification layer, use network for

final classification, end-to-end training
• 100x speed up of R-CNN (0.02 – 0.1 FPS  0.5-20 FPS) with similar

accuracy

https://arxiv.org/abs/1504.08083

Faster R-CNN – Ren et al. 2016

• Convolutional features used for generating proposals and scoring
– Generate proposals with “objectness” scores and refined bboxes for

each of k “anchors”
– Score proposals in same way as Fast R-CNN

• Similar accuracy to Fast R-CNN with 10x speedup

https://arxiv.org/pdf/1506.01497.pdf

Mask R-CNN – He Gxioxari Dollar Girshick (2017)

• Same network as Faster R-CNN,
except
– Bilinearly interpolate when extracting

7x7 cells of ROI features for better
alignment of features to image

– Instance segmentation: produce a
28x28 mask for each object category

– Keypoint prediction: produce a 56x56
mask for each keypoint (aim is to
label single pixel as correct keypoint)

Example ROI and predicted mask

Example ROI and
predicted mask and
keypoints

https://arxiv.org/pdf/1703.06870.pdf

Top performing object detector, keypoint segmenter,
instance segmenter (at time of release and for a bit after)

Example detections and instance segmentations

Example detections and instance segmentations

Example keypoint detections

What does the CNN learn?

Map activation back to the input pixel space

• What input pattern originally caused a given activation in the
feature maps?

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 1 (visualization of randomly sampled features)

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Activations (which pixels caused
the feature to have a high
magnitude)

Image patches that had high
activations

https://arxiv.org/abs/1311.2901

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

U-Net Architecture O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, 2015.

The “U-Net” is an encoder-decoder
with skip connections between
mirrored layers in the encoder and
decoder stacks.

Fig from Isola et al. 2017 Fig src

U-Net style architectures are used to
generate pixel maps (e.g., RGB
images or per-pixel labels)

https://nchlis.github.io/2019_10_30/page.html

Things to remember

• Massive ImageNet dataset was an ingredient to
deep learning breakthrough

• Skip connections, data augmentation, and batch
normalization are commonly used techniques

• Models trained on ImageNet are used as
pretrained “backbones” for other vision tasks

• Mask-RCNN samples patches in feature maps and
predicts boxes, object region, and keypoints

• Many image generation and segmentation
methods are based on U-Net downsamples while
deepening features, then upsamples with skip
connections

	CNNs and Computer Vision
	Slide Number 2
	Today’s Lecture
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	AlexNet: ILSVRC 2012 winner
	ResNet: the residual module
	ResNet: Residual Bottleneck Module
	ResNet: going real deep
	ResNet CNN Components
	Batch Normalization
	Example code: ResBlock
	Example code: ResNet-18 architecture for ImageNet
	ResNet Architectures and Results
	Another common trick: “data augmentation”
	Data Augmentation (Jittering)
	Applying Data Augmentation
	What if we want to do some new task?
	New Task Solution 1: “Linear probe” / “Feature extraction”
	How to apply linear probe
	New Task Solution 2: “Fine-tuning”
	How to apply fine-tuning
	Task transfer vs. # target task examples
	2 Minute Break
	Statistical template approach to object detection
	Slide Number 31
	Fast R-CNN – Girshick 2015
	Faster R-CNN – Ren et al. 2016
	Mask R-CNN – He Gxioxari Dollar Girshick (2017)
	Top performing object detector, keypoint segmenter, instance segmenter (at time of release and for a bit after)
	Example detections and instance segmentations
	Example detections and instance segmentations
	Example keypoint detections
	What does the CNN learn?
	Map activation back to the input pixel space
	Layer 1 (visualization of randomly sampled features)
	Layer 2
	Layer 3
	Layer 4 and 5
	U-Net Architecture
	Things to remember

