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Today’s Lecture
• ImageNet Challenge Overview
• ResNet model in more detail
• Adapting a pre-trained network to new tasks
• Mask-RCNN line of detection/segmentation
• U-Net Architecture













Slide source

https://www.cs.princeton.edu/courses/archive/spr18/cos598B/slides/cos598b_7feb18_imagenet.pdf
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AlexNet



AlexNet: ILSVRC 2012 winner

• Similar framework to LeNet but:
• Max pooling, ReLU nonlinearity
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf


ResNet: the residual module

• Use skip or shortcut
connections around 2-3 
layer MLPs

• Gradients can flow 
quickly back through skip 
connections

• Each module needs only 
add information to the 
previous layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 
Learning for Image Recognition, CVPR 2016 (Best Paper), 150K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


ResNet: Residual Bottleneck Module

• Directly performing 3x3 
convolutions with 256 feature 
maps at input and output: 
256 x 256 x 3 x 3 ~ 600K 
operations

• Using 1x1 convolutions to 
reduce 256 to 64 feature maps, 
followed by 3x3 convolutions, 
followed by 1x1 convolutions 
to expand back to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 
Learning for Image Recognition, CVPR 2016 (Best Paper)

Used in 50+ layer networks

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


ResNet: going real deep

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 
Learning for Image Recognition, CVPR 2016

Despite depth, the residual connections enable error 
gradients to “skip” all the way back to the beginning

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


ResNet CNN Components
• Conv2d: learned 2D convolutional filters (same linear weights 

applied to a patch surrounding each pixel)
• BatchNorm2D: Convolutional batch normalization (see next 

slide)
• ReLU: non-linearity with gradient={0,1}
• Linear layer: feature projection / final linear classifier



Batch Normalization

Batch Normalization: Accelerating Deep Network Training by 
Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

• During training, the feature 
distribution at intermediate 
layers keep changing as the
network learns

• This destabilizes training
• BatchNorm normalizes features 

of each mini-batch according to 
its mean and variance and 
learned parameters 𝛾𝛾, 𝛽𝛽

• Using BatchNorm often 
improves speed and 
effectiveness of training

http://arxiv.org/pdf/1502.03167v3.pdf


Example code: ResBlock
class ResBlock(nn.Module):

def __init__(self, in_channels, out_channels, downsample):
super().__init__()
if downsample:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.shortcut = nn.Sequential(

nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2),
nn.BatchNorm2d(out_channels)

)
else:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.shortcut = nn.Sequential()

self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, input):
shortcut = self.shortcut(input)
input = nn.ReLU()(self.bn1(self.conv1(input)))
input = nn.ReLU()(self.bn2(self.conv2(input)))
input = input + shortcut
return nn.ReLU()(input) This ‘+’ is the skip connection!

If downsampling, do it here too so dimensions match

“channels” = # feature maps
kernel_size = filter size, e.g. 3x3
stride = # pixels to skip when evaluating convolution
padding: to calculate filter values near edge of image/map



Example code: ResNet-18 architecture for ImageNet
class Network(nn.Module):

def __init__(self, num_classes=1000):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input

Pretrained Torch models

https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md


ResNet Architectures and Results

(vs. 15% top-5 err for AlexNet)



Another common trick: “data augmentation”

• Randomly translate, crop, rotate, mirror, shift colors, or overlay 
images to create more variations
– Apply random transformation to each sample in each batch as it is 

processed in training
– Simulates a larger training set, and makes it so that the network will 

learn from variations of the original example in each epoch

• Can improve performance, even with fairly large datasets



Data Augmentation (Jittering)

• Create virtual training 
samples
– Horizontal flip
– Random crop
– Color casting
– Geometric distortion

• Idea goes back to 
Pomerleau 1995 at 
least (neural net for 
car driving)

Deep Image [Wu et al. 2015]

Slide: Jiabin Huang

http://arxiv.org/pdf/1501.02876v2.pdf


Applying Data Augmentation

References:
https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

1. Define transformation sequence
2. Input transform specification to data loader

https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html


What if we want to do some new task?
• Suppose we’ve trained ImageNet model
• But we want to do something else, e.g. classify flowers or dog 

breeds
• We don’t have a huge dataset for that task

Encoder DecoderInput 
Image

E.g. weights of
convolutional layers, 
trained on ImageNet

E.g. final 1000 class 
linear layer weights

Output 1000 Class
Logits

ImageNet Trained Model



New Task Solution 1: “Linear probe” / “Feature extraction”

Encoder
(Frozen)

Decoder
(Tuned)

Input 
Image

Output Nc Class
Logits

ImageNet Trained Encoder
New Task Decoder

Keep original encoder weights. Replace decoder linear layer 
and train its weights on new task without changing encoder.

Equivalently, extract features from encoder and train linear 
model on those features

Pre-trained 
Model

Target 
Model



How to apply linear probe
Pre-compute features method
1. Load pretrained model (many 

available)
https://pytorch.org/vision/stable/m
odels.html

2. Remove prediction final layer
3. Apply model to each image to 

get features; save them
4. Train new linear model (e.g.

logistic regression or SVM) on 
the features

Freeze encoder method
1. Load pretrained model (many 

available)
https://pytorch.org/vision/stable/m
odels.html

2. Set network to not update
weights

3. Replace last layer
4. Retrain network with new 

dataset
- Slower than method on left but 
does not require storing features, 
and can apply data augmentation

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6


New Task Solution 2: “Fine-tuning”

Encoder
(Fine-tuned)

Decoder
(Tuned)

Input 
Image

Output Nc Class
Logits

New Task Encoder
New Task Decoder

1. Initialize with original encoder weights. 
2. Replace decoder linear layer.
3. Use 10x smaller learning rate than normal and train 

Pre-trained 
Model

Target 
Model



How to apply fine-tuning
1. Load pre-trained model
2. Replace last layer
3. Set a low learning rate (e.g. lr=e-4)

– Learning rate is often at least 10x lower than for “scratch” training
– Can “warm start” by freezing earlier layers initially and then unfreezing 

after a few epochs when the linear layer is mostly trained (avoids messing 
up encoder while classifier is adjusting)

– Can set lower learning rate for earlier layers

Other examples of layer customization (from Weijie)

Assumes last layer has 512 features and is called “fc”

https://colab.research.google.com/drive/1x47sniwTl18bZeQEjY9JjHzPnnk7Bo72?usp=sharing


Task transfer vs. # target task examples

“Learning Curves” (2021) pdf

Green: Train from scratch
Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet
ResNet18, Err vs # examples / class (in paren)

https://arxiv.org/abs/2010.11029


2 Minute Break
• Comparing linear probe, fine-tuning, and training from scratch, 

when does each have an advantage and why?



Statistical template approach to object detection
Propose 
Window

Sliding window: scan 
image pyramid

Region proposals: 
edge/region-based, 
resize to fixed window

Extract 
Features

HOG

CNN features

Fast randomized features

Classify

SVM

Boosted stubs

Neural network

Post-
process

Non-max 
suppression

Segment or 
refine 
localization



R-CNN (Girshick et al. CVPR 2014)

• Extract regions using Selective Search method (Uijilings et 
al. IJCV 2013)

• Extract rectangles around regions and resize to 227x227
• Extract features with fine-tuned  CNN (that was initialized 

with network trained on ImageNet before training)
• Classify last layer of network features with SVM

http://arxiv.org/pdf/1311.2524.pdf

http://arxiv.org/pdf/1311.2524.pdf


Fast R-CNN – Girshick 2015

• Compute CNN features for image once
• ROI Pooling: Pool into 7x7 spatial bins for each region proposal, 

output class scores and regressed bboxes
• Other refinements: compress classification layer, use network for 

final classification, end-to-end training
• 100x speed up of R-CNN (0.02 – 0.1 FPS  0.5-20 FPS) with similar 

accuracy

https://arxiv.org/abs/1504.08083


Faster R-CNN – Ren et al. 2016

• Convolutional features used for generating proposals and scoring
– Generate proposals with “objectness” scores and refined bboxes for 

each of k “anchors”
– Score proposals in same way as  Fast R-CNN

• Similar accuracy to Fast R-CNN with 10x speedup

https://arxiv.org/pdf/1506.01497.pdf


Mask R-CNN – He Gxioxari Dollar Girshick (2017)

• Same network as Faster R-CNN, 
except
– Bilinearly interpolate when extracting 

7x7 cells of ROI features for better 
alignment of features to image

– Instance segmentation: produce a 
28x28 mask for each object category

– Keypoint prediction: produce a 56x56 
mask for each keypoint (aim is to 
label single pixel as correct keypoint)

Example ROI and predicted mask

Example ROI and 
predicted mask and 
keypoints

https://arxiv.org/pdf/1703.06870.pdf


Top performing object detector, keypoint segmenter, 
instance segmenter (at time of release and for a bit after)



Example detections and instance segmentations



Example detections and instance segmentations



Example keypoint detections



What does the CNN learn?



Map activation back to the input pixel space

• What input pattern originally caused a given activation in the 
feature maps?

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901


Layer 1 (visualization of randomly sampled features)

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Activations (which pixels caused 
the feature to have a high 
magnitude)

Image patches that had high 
activations 

https://arxiv.org/abs/1311.2901


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901


U-Net Architecture O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, 2015.

The “U-Net”  is an encoder-decoder 
with skip connections between 
mirrored layers in the encoder and 
decoder stacks.

Fig from Isola et al. 2017 Fig src

U-Net style architectures are used to 
generate pixel maps (e.g., RGB 
images or per-pixel labels)

https://nchlis.github.io/2019_10_30/page.html


Things to remember

• Massive ImageNet dataset was an ingredient to 
deep learning breakthrough

• Skip connections, data augmentation, and batch 
normalization are commonly used techniques

• Models trained on ImageNet are used as
pretrained “backbones” for other vision tasks

• Mask-RCNN samples patches in feature maps and
predicts boxes, object region, and keypoints

• Many image generation and segmentation 
methods are based on U-Net downsamples while 
deepening features, then upsamples with skip 
connections
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