Deep
Learning

Applied Machine Learning
Derek Hoiem

Dall-E

lastclass

* Perceptrons are linear prediction
models

 MLPs are non-linear prediction models,
composed of multiple linear layers with
non-linear activations B

Stage

sl Output

0.6

“Probability of
beingAlive”

* MLPs can model more complex
functions, but are harder to optimize

e Optimization is by stochastic gradient
descent

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Another application example: mapping position/rays to color

No Fourier features

With Fourier features

(a) Coordinate-based MLP (b) Image regression (c) 3D shape regression (d) MRI reconstruction (e) Inverse rendering
(z,y)— RGB (z,y,z) — occupancy (z,y,z)— density (xz,y,z)— RGB, density
L2 loss

ReLU MLP with 4 layers and 256 channels (nodes per layer)
Sigmoid activation on output

256 frequency positional encoding
Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934

HW 2

https://docs.google.com/document/d/13vTEGx3fdfc4rtcF86xoUy
Xm6eHmuvys5ZkMbcEgK4s/edit

https://docs.google.com/document/d/13vTEGx3fdfc4rtcF86xoUyXm6eHmuvys5ZkMbcEgK4s/edit
https://docs.google.com/document/d/13vTEGx3fdfc4rtcF86xoUyXm6eHmuvys5ZkMbcEgK4s/edit

Today’s Lecture

* The story of how deep learning became so important
* Optimization

e Residual Networks

Slide: Lazebnik

The Perceptron

Weights

Output: sgn(w-x + b)

>

Xp

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386—408.

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July-7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—Ilearned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls
. The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying

its surroundings without -any
human training or control.” |

The “brain” is designed to
remember images and informa-
tion it has perceived jtself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to’
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

line and which would be con-
scious of their existence. ‘

Slide: Lazebnik

1958 New York
Times...

In today’s demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q"” for the left
squares and “O" for the right

squares. v
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

Two-layer neural network

InpLt Hidden Laver Output
Lawer Layer
Input #1 —=
Input #2 —
Input #3 —
INput #4 —

Can learn nonlinear functions provided each perceptron has a differentiable

nonlinearity
L 1
>Q>_ sigmoid: g()=1
1+e

Slide: Lazebnik

Multi-layer neural network

hidden layer 1 hidden laver 2 hidden layer 3

input laver

Slide: Lazebnik

Training of multi-layer networks

* Find network weights to minimize the training error between true
and estimated labels of training examples, e.g.:

E(w)= Z ~f(x))’

i=1

OFE

 Update weights by gradient descent: W< W — Ota—
W

Slide: Lazebnik

Training of multi-layer networks

Find network weights to minimize the training error between true
and estimated labels of training examples, e.g.:

E(w)= Z ~f(x))’

i=1

OFE

Update weights by gradient descent: W< W — Ola—
W

Back-propagation: gradients are computed in the direction from
output to input layers and combined using chain rule

Stochastic gradient descent: compute the weight update w.r.t. a
small batch of examples at a time, cycle through training examples
in random order in multiple epochs

Slide: Lazebnik

MLPs on Images

The raster image (pixel matrix)

e

= = v ey

e

= Tk

092 [0.93 | 094 | 097 | 0.62 [0.37 | 0.85 | 0.97 [0.93 | 0.92 | 0.99
095 [0.89 | 0.82 | 0.89 | 0.56 [0.31 | 0.75 | 0.92 [0.81 | 0.95 | 0.91
0.89 [0.72 | 0.51 | 055 | 0.51 [0.42 | 0.57 | 0.41 [0.49 | 0.91 | 0.92
0.96 [0.95 | 0.88 | 0.94 | 0.56 [0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95
0.71 [0.81 | 0.81 | 0.87 | 0.57 [0.37 | 0.80 | 0.88 [0.89 | 0.79 | 0.85
0.49 [0.62 | 0.60 [0.58 | 0.50 [0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33
0.86 | 0.84 [0.74 | 0.58 | 0.51 | 0.39 [0.73 | 0.92 | 0.91 | 0.49 [0.74
096 [0.67 | 0.54 [0.85 | 048 [0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93
0.69 | 0.49 [0.56 | 0.66 | 0.43 | 042 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99
0.79 [0.73 | 090 [0.67 | 0.33 [0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97

0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 [0.99 | 0.93

0.91

0.94

Color Image

Images in Python

im = cv2.imread(filename) # read image
im = cv2.cvtColor (im, cv2.COLOR BGR2RGB) # order channels as RGB
im = im / 255 # values range from 0 to 1

e RGBimage im isaHx W x 3 matrix (numpy.ndarray)

e im[0,0,0] =top-left pixel value in R-channel

« im[y, x, c] =y+1 pixels down, x+1 pixels to right in the cth channel
e im[H-1, W-1, 2] =bottom-right pixel in B-channel

column >
row
092 | 0.93 | 094 [097 | 062 | 037 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99 |
095 | 0.89 | 0.82 | 0.89 | 056 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 | G
0.89 | 0.72 | 0.51 | 0.55 555 1 059
0.96 | 095 | 0.88 | 0.94 0.95 | 091 B
0.71 | 0.81 | 0.81 | 0.87
0.91 | 0.92
0.49 | 0.62 | 0.60 | 0.58 0.92 | 099
0.97 | 0.95
0.86 | 0.84 | 0.74 | 0.58 0.95 | 0.91
0.79 | 0.85
0.96 | 0.67 | 0.54 | 0.85 0.91 | 0.92
0.45 | 0.33
0.69 | 0.49 | 0.56 | 0.66 0.97 | 0.95
0.49 | 0.74
0.79 | 0.73 | 0.90 | 0.67 0.79 | 0.85
0.82 | 0.93
\ 4 091 | 0.94 | 0.89 | 0.49 045 | 0.33
OO : : 0.90 | 0.99 0.49 0.74
0.79 | 0.73 | 090 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 0.93 | 0.97 0'82 0'93
091 | 0.94 [0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 | :
Foroo oo ereo oo o re— o oo o= 0.90 | 0.99
{079 [073] 090|067]033[061]069]079]073]093]0097
f 091 | 094 [089 [049 | 041 | 078 | 0.78 [0.77 | 0.89 | 0.99 | 0.93

From fully connected to convolutional networks

hidden layer 1 hidden layer 2 hidden layer 3

input layer

< You could treat the image

like a vector of values and
add fully connected layers
(which is what we do in
HW 1 and 2)

But this doesn’t take
image Fully connected layer advantage of the 2D
structure of images

Slide: Lazebnik

Image filtering

* Image filtering: compute function of local
neighborhood at each position
— Enhance images
* Denoise, resize, increase contrast, etc.

— Extract information from images
* Texture, edges, distinctive points, etc.

— Detect patterns
* Template matching

From fully connected to convolutional networks

image Convolutional layer

Slide: Lazebnik

From fully connected to convolutional networks

feature map

-/

learned
weights
\ T
— \
T
L 1

image Convolutional layer

Slide: Lazebnik

From fully connected to convolutional networks

feature map

/

learned
weights

— |
—
\
\

image Convolutional layer

Slide: Lazebnik

Convolution as feature extraction

Feature Map

Slide: Lazebnik

From fully connected to convolutional networks

feature map

/

learned
weights

— |
—
\
\

image Convolutional layer

Slide: Lazebnik

From fully connected to convolutional networks

next layer
image Convolutional layer

Slide: Lazebnik

Key operations in a CNN

g

Feature maps }

i

[Spatial pooling J

=

)

[Input Image]

Feature Map

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key operations

i

[Feature maps]

i

Rectified Linear Unit (ReLU)

[Spatial pooling }

Convolution
(Learned)

3

Input Image ' S »

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key operations

g

Feature maps

Spatial pooling

)
—

Max

[

Input Image]

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key idea: learn features and classifier that work
well together (“end-to-end training”)

Label

»E’H%

Convolution/pool
Convolution/pool
Convolution/pool

Convolution/pool

Convolution/pool

i

LeNet-5 for character/digit recognition

C3:f. maps 16@10x10
C1: feature maps S4:1. maps 16@5x5

INPUT 6@28x28
52 f. maps

32x32
B@14x14

l Fuucgml.ecﬁgn | (Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

* Average pooling

* Sigmoid or tanh nonlinearity

* Fully connected layers at the end

 Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278-2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Fast forward to the arrival of big visual data...

* Images gathered from Internet

::I:-"'l:':. ;:.:i = .“—#.I
I M A G E INLC ~14 million labeled images, 20k classes
 Human labels via Amazon MTurk
* ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik

http://www.image-net.org/challenges/LSVRC/

2012 ImageNet 1K

(Fall 2012)

40
35

30

2

1

1
0

|*?‘\P‘ o* ,‘0‘6
1&

Error
N
o (0] o (6]

(S,]

3
\F«P‘% & P‘“s‘e(

v-©

Slide: Jia-bin Huang

2012 ImageNet 1K '

(Fall 2012)

40
35 g
30
25

S 20

5
15
10
5
0
»‘a“?\’*%i N“S"e& *@C‘“‘\\A@P 0t

Slide: Jia-bin Huang

AlexNet: ILSVRC 2012 winner

R T s 3| LAY RN 7
e 3| e M |) . — \dense
\ o, P 192 192 128 2048 204
57 128 e e a
I AV E R 13 \ 13
e e, X
; e, E A N T
3 NEE I | X
57 - 3| eSS 13 dense dense
A 1000
192 192 128 Max])
: 2048
Max 128 Max pooling 2 2048
pooling pooling

3 48

e Similar framework to LeNet but:
* Max pooling, ReLU nonlinearity
* More data and bigger model (7 hidden layers, 650K units, 60M params)
 GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week
* Dropout regularization

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

What enabled the
breakthrough?

1. RelU activation enabled
large models to be
optimized

2. ImageNet provided diverse
and massive annotation to
take advantage of the
models

3. GPU processing made the
optimization practicable

R-CNN demonstrates major detection improvement by pre-training
on ImageNet and fine-tuning on PASCAL

Improvements in Object Detection

o
N

R-CNN
§mm Deep learning detection

o
o

o
&

5

S

O

O

=

:é 0.4 L 3
o ./.—'/.’l Regionlets
Q- 0.3

i

g 0.2 Deformable Parts Model

< (v1-vd)

© 0.1 @

= HOG Template

o

2005 2007 2008 2009 2010 2012 2013 2014

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013 R-CNN: Girshick et al. 2014

“CNN Features off-the-shelf: an Astounding Baseline for
Recognition”

_ CNN i
Representation)
Leam Extract Features
Part Strong ‘ ‘
Normalized };‘)‘ RGB, gradient, || SVM
Annotatmns DPM H =her) LBP

||3IIJ Best state of the art 00 CNN off-the-shelf 18 CNN off-the-shelf + augmentation 00 Specialized CNN |

100

] 59.3

-
o

80.2

] 81.09

801

60}

40

Razavian et al. CVPR 2014

2 Minute Stretch Break

How it felt to be an object recognition researcher
https://youtu.be/XCtuZ-fDL2E?t=140

A1:
» Deep networks couldn’t be optimized
* Needed bigger datasets
« Datasets were created to be
sufficiently big for existing
algorithms

Recall

Q1: Why were neural networks less
effective than other approaches for many
years?

Q2: What were the three most important
ingredients to the breakthrough?

A2:

» RelLU activation (easier optimization)
« Big dataset

» GPU processing

https://youtu.be/XCtuZ-fDL2E?t=140

Optimization: check out this great site

Great site by Lili Jiang

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c¢

Gradient of loss wrt weights

Basic SGD: /
Awy = —nge(w)
Wep1 = W + Awy

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD + Momentum

SGD + Momentum:

m(w;) = B - m(we) + ge(We)
Awe = =1 - m(wy)

Wep1 = W + Awy

Momentum (magenta)
converges faster and carries
the ball through a local
minimum

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

AdaGrad: Adaptive Gradient

AdaGrad:
Imag (W) = Imag (We—q) + gt(Wt)Z
Awy = =19 (W) /\/Gmag(We) (normalize by path length of all previous updates)

Wep1 = W + Awy

B Step-by-Step

Gradient Arrows
| Adjusted Gradient Arrows
Momentum Arrows
" | Sum of Gradient Squared
Path

Gmadient Descent

Learning Rate: 1e -2

AdaGrad (white) avoids
moving in only one weight
direction, and can lead to
smoother convergence

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

RMSProp: Root Mean Squared Propagation

RMSProp:
ImagWe) = € - GmagWe—1) + (1 —¢€) - g:(wy)? (introducing decay rate turns this into moving avg)

Awe = =19 (W) /\/Gmag(We) (normalize by path length of all previous updates)

Wep1 = W + Awy

|| Momentum Arrows
|| Sum of Gradient Squared
[| Path

' Gradient Descent

Learning Rate:. 1e

| Momentum
Learning Rata: e 2 RMSPrOp (green) mOVGS

Decay rate: ' - faster than AdaGrad (Whlte)

M Adagrad

_ Learning Rate: e :—2 flv
Learning Rate: 1 -3 I~

Decayrate: 0990 |

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adam: Adaptive Moment Estimation

Adam:
mwe) =B -mwe) + (1 = B) - ge(w) [momentum, = 0.9]
gmag(Wt) = €- gmag(Wt—l) +(1—¢€) 'gt(Wt)z [RMSProp, € = 0.999]

Awy = -1 - m(Wt)/\/gmag (W)
Wep1 = W + Awy

Adam is widely used and
Videos easier to tune than SGD +
momentum

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Even with ReLU and Adam optimization, it was hard to get
very deep networks to work well

GoogleNet: add bottlenecks and multiple stages of
supervision g

& &
A A A B
B B vy BE
] T ! E e, E - EN B 2 2
e i Bl oA
= -] = =a Er. Y
k2

(N)E+SXS
joodabeiany
(S)IT+IXT
AUOD

OXewyos

Auxiliary classifier

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842

What was the problem?

 Were deeper networks overfitting the training data?
* Or was the problem just that we couldn’t optimize them?

* How could we answer this question?

Look at the training error!

'| IH :':"
"J.IVI',I”I h\ﬁ
= "y |
S I = 56-laver
5 | S :
- - :
- =53
= \,\W S 1} 20-layer
=i =i ¥
= S56-layer =
= 5
E -—
= 20-layer
% 5 % 1 5 5

2 3 } 2 3 r
iter. (led) iter. (led)

With deeper networks, the training error goes up!?!

Fig: He et al. 2016

https://arxiv.org/abs/1512.03385

Very deep networks, vanishing gradients, =
and information propagation |
Vanishing gradients ===
* Early weights have a long path to reach output T
* Any zeros along that path kill the gradient Cxga
* Early layers cannot be optimized T
* Multiple stages of supervision can help, but it’s
complicated and time-consuming ==
Information propagation ==
* Without residual connections, networks need to
continually maintain and add to information
represented in previous layers

ResNet: the residual module

* Use skip or shortcut
connections around 2-3

layer MLPs .

e Gradients can flow WeigHL dye
quickly back through skip F(x) 'l' b X
connections WElant ‘ayer identity

 Each module needs only F(x) +x
add information to the
previous layers

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper), 150K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: Residual Bottleneck Module

Used in 50+ layer networks

I 256-d

!

1x1, 64
l relu

3x3, 64
l relu

1x1, 256

Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K

operations

Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x64x1x1~16K

64 x 64 x 3 x 3~ 36K

64 x 256 x1x1~ 16K

Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper)

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: going real deep

=)
. =)
Revolution of Depth =
S
AlexNet, 8 layers == VGG, 19 layers E ResNet, 152 layers =
(ILSVRC 2012) (ILSVRC 2014) £S (ILSVRC 2015)

Despite depth, the residual connections enable error
gradients to “skip” all the way back to the beginning

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Example code: ResBlock

class ResBlock(nn.Module) :

def init (self, in channels, out channels, downsample):
super (). init ()
if downsample:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=2, padding=1)

self.shortcut = nn.Sequential (
nn.Conv2d(in channels, out channels, kernel size=1, stride=2),
nn.BatchNorm2d (out channels)

)

else:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=1, padding=1)
self.shortcut = nn.Sequential ()
self.convZ = nn.Conv2d(out channels, out channels, kernel size=3, stride=1l, padding=1)
self.bnl = nn.BatchNorm2d (out channels)
self.bn2 = nn.BatchNorm2d (out channels)

def forward(self, input):
shortcut = self.shortcut (input)
input = nn.RelU() (self.bnl (self.convl (input)))
input = nn.RelU() (self.bn2(self.conv2 (input)))
input = input + shortcut
return nn.ReLU() (input)

Example code: ResNet-18 architecture for ImageNet

class Network (nn.Module) :

def init (self, num classes=37):

super (). init ()
resblock = ResBlock

self.layer0 = nn.
nn.Conv2d (3,

Sequential (

64, kernel size=7, stride=2, padding=3),

nn.MaxPool2d(kernel size=3, stride=2, padding=1l),
nn.BatchNorm2d (64),

nn.RelLU ()
)

self.layerl = nn.
resblock (64,
resblock (64,
)

self.layer2 = nn.
resblock (64,
resblock (128,
)

self.layer3 = nn.
resblock (128,
resblock (256,
)

self.layer4d = nn.
resblock (256,
resblock (512,

)
self.gap = torch.

Sequential (
64, downsample=False),

64, downsample=False)

Sequential (
128, downsample=True),

128, downsample=False)

Sequential (
256, downsample=True),

256, downsample=False)

Sequential (
512, downsample=True),

512, downsample=False)

nn.AdaptiveAvgPool2d (1)

self.fc = torch.nn.Linear (512, num classes)

def forward(self,

input
input
input
input
input
input
input
input

input) :
self.layer0O (input)
self.layerl (input)
self.layer?2 (input)
self.layer3 (input)
self.layer4 (input)
self.gap (input)
torch.flatten (input, 1)
self.fc(input)

return input

ResNet Architectures and Results

layer name | output size 1 8-layer | 34-layer | 50-layer 1 0]-layer 152-layer method lOp—l erT. 'ED]J—f} eIT.
conv | 112112 77, 64, stride 2 — T
33 max pool, stride 2 VGG [41] (ILSVRC 14) - 8.43
comax | 56x56 {3\(3 64] [3 64} [1xl,64] [1x1,64] [1x1,64] GoogleNet [44] (ILSVRC'14) - 7.89
- T T =2 S 3 3x3, 64 | %3 Ix3, 64 |[x3 Ix3, 64 | %3
3 ! r

33, 64 33, 64 i || s | | aer, 250 | VGG [41] (v5) 24.4 7.1
33,128] f 33 128 1 [1x1, 128] [1x1, 128] [11,128 | PReLU-net [13] 21.59 5.71
convi_x 2828 3><3-_ 128 w2 3x3 128 wd 3x3, 128 | =4 3x3, EEE =4 3x3, 128 | =8 BN—iI]CEpﬁOH [16] 21.99 581

- ’ - - . | 1x1,512 | | 1x1,512 | | 1x1,512 | _
T 33256 1 [1x1,256 | [1x1,256 | [1%1,256] ResNet-34 B 21.84 5.71
convd_x 414 3 3:;515 x2 3 _1-2156 ®6 3x3,256 | x6 3x3,256 | =23 3x3,256 | =36 ResNet-34 C 21.53 5.60
e L | 1x1, 1024 | | 1x1,1024 | 11, 1024 | ResNet.50 20,74 s 05

303502] 323,512 [1x1,512] [1x1,512] [1x1,512] esivet ' 2-
conv5_x 7x7 a3 512 |72 || 3x3 512 [¥3 || 3%3.512 | x3 3%3,512 | %3 3%3.512 | %3 ResNet-101 19.87 4.60
- T - R L]x]_.ZIME_ L]X',ZO‘*—"—SJ L lKl.Z':HEJ RESNEt—lﬁz lg 1‘8 449

1x1 average pool, 1000-d fc, softmax - = -

FLOPs 1.8 107 3.6x10° 3.8x107 | 7.6x10¢ | 113107

Table 4. Error rates (%) of single-model results on the ImageNet

validation set (except " reported on the test set).

What to remember magenet

* Deep networks provide huge gains

in performance XXXXXX
— Large capacity, optimizable models ' '
— Learn from new large datasets x |
7 = =D)
* ReLU and skip connections simplify I
optimization

e SGD is still often used in practice,
but Adam is most widely used

Next consolidation and review

* How to represent and measure data

* Q& A

	Deep Learning
	Last class
	Another application example: mapping position/rays to color
	HW 2
	Today’s Lecture
	Slide Number 7
	Slide Number 8
	Two-layer neural network
	Multi-layer neural network
	Training of multi-layer networks
	Training of multi-layer networks
	MLPs on Images
	The raster image (pixel matrix)
	Color Image
	Images in Python
	From fully connected to convolutional networks
	Image filtering
	From fully connected to convolutional networks
	From fully connected to convolutional networks
	From fully connected to convolutional networks
	Convolution as feature extraction
	From fully connected to convolutional networks
	From fully connected to convolutional networks
	Key operations in a CNN
	Key operations
	Key operations
	Key idea: learn features and classifier that work well together (“end-to-end training”)
	LeNet-5 for character/digit recognition
	Fast forward to the arrival of big visual data…
	Slide Number 31
	Slide Number 32
	AlexNet: ILSVRC 2012 winner
	What enabled the breakthrough?
	Slide Number 35
	“CNN Features off-the-shelf: an Astounding Baseline for Recognition”
	2 Minute Stretch Break
	Optimization: check out this great site
	SGD + Momentum
	AdaGrad: Adaptive Gradient
	RMSProp: Root Mean Squared Propagation
	Adam: Adaptive Moment Estimation
	Even with ReLU and Adam optimization, it was hard to get very deep networks to work well
	What was the problem?
	Look at the training error!
	Very deep networks, vanishing gradients, and information propagation
	ResNet: the residual module
	ResNet: Residual Bottleneck Module
	ResNet: going real deep
	Example code: ResBlock
	Example code: ResNet-18 architecture for ImageNet
	ResNet Architectures and Results
	What to remember
	Next consolidation and review

