
MLPs and
Backprop

Applied Machine Learning
Derek Hoiem

Dall-E

Review from the practice questions
True or False:

• Unlike SVM, linear logistic regression loss always adds a non-zero penalty over all training data points.

• The PEGASUS algorithm computes the gradient for the optimization algorithm using only one sample
out of the training data points – instead of using the whole dataset – thus increasing its computational
efficiency.

• PEGASUS has the disadvantage that the larger the training dataset, the slower it can be optimized to
reach a particular test error.

Multi-layer Perceptrons (MLPs)

• What is a perceptron

• What is an MLP
– Layers
– Activations
– Losses

• How do we optimize with SGD and back-propagation

Perceptron

Fig source: CS 440

Perceptron = thresholded linear prediction model for
classification

Very similar to linear logistic regression, though perceptron does
not imply a particular error or training objective

sgn returns -1 for negative inputs and +1
for positive inputs

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Perceptron Update Rule
Prediction: 𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0 + 𝑤𝑤1𝑥𝑥1 + … 𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏

Error: 𝐸𝐸 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 2

Update 𝑤𝑤𝑖𝑖: take a step to decrease 𝐸𝐸 𝒙𝒙
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 [𝜕𝜕 𝑓𝑓 𝒙𝒙 −𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖

]
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖

𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖

prediction target

Chain Rule:
ℎ 𝑥𝑥 = 𝑓𝑓(𝑔𝑔 𝑥𝑥), then
ℎ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 𝑔𝑔𝑔(𝑥𝑥)

Learning rateMake error lower

(the 2 is folded into the learning rate)

Perceptron Optimization by SGD
Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)
For each iteration 𝑡𝑡:

Split data into batches
𝜂𝜂 = 0.1/𝑡𝑡
For each batch 𝑋𝑋𝑏𝑏:

For each weight 𝑤𝑤𝑖𝑖:

𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 1
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑓𝑓 𝒙𝒙𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛𝑛𝑛

With different loss, the update changes accordingly
Logistic loss:

𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0 + 𝑤𝑤1𝑥𝑥1 + … 𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏

𝑃𝑃 𝑦𝑦|𝒙𝒙 = 1
1+exp −𝑦𝑦𝑦𝑦 𝑥𝑥

, 𝑦𝑦 ∈ {−1,1}

𝐸𝐸 𝒙𝒙 = −log𝑃𝑃 𝑦𝑦|𝒙𝒙

𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝜂𝜂 1
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 1 − 𝑃𝑃(𝑦𝑦 = 𝑦𝑦𝑛𝑛|𝑥𝑥𝑛𝑛)

decrease –logP(y|x)  increase logP(y|x)

Is a perceptron enough?

Which of these can a perceptron solve (fit with zero training error)?

Demo
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing

Perceptron is often not enough
• Perceptron is linear, but we often need a non-linear prediction

function
Which of these can a perceptron solve (fit with zero training error)?

Yes No Not even close

Multi-Layer Perceptron (MLP)

Nodes in hidden
layer(s) encode latent
relationships

Latent = hidden, not
explicitly identified

Fig source: CS 440

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Example MLP for MNIST Digits

• Input: # of features (one
per pixel)

• Fully connected (FC)
layer(s): linear feature
transformations

• Non-linear activation:
enables complex functions
to be modeled by multiple
FC layers

• Output: score per class

Input Values (28x28=784)

Fully Connected Layer (784->256)

ReLU Activation

Fully Connected Layer (256->10)

Output Values (10)

𝒙𝒙0
𝒙𝒙0 = 784

𝒙𝒙1 = 𝑊𝑊10𝒙𝒙0
𝑊𝑊10. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 256, 784

𝒙𝒙1 = 256

𝒙𝒙2 = max(𝒙𝒙1, 0)
𝒙𝒙2 = 256

𝒙𝒙3 = 𝑊𝑊32𝒙𝒙2
𝑊𝑊32. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10,256

𝒙𝒙3 = 10

Total parameters: (256 x (784+1)) + (10 x (256+1)), +1 is for bias terms

Linear activation
• A no-op activation (i.e. nothing happens)
• Could be used for information compression or data alignment
• Multiple stacked linear layers are equivalent to a single linear layer

𝑓𝑓 𝑥𝑥 = 𝑥𝑥

𝑓𝑓𝑓 𝑥𝑥 = 1

Sigmoid activation
• Maps any value to 0 to 1 range
• Traditionally, a common choice for internal layers
• But weak gradients at extremum make it difficult to optimize if there are many layers (“vanishing

gradient problem”)
• Common choice for output layer to map to a probability

𝑓𝑓 𝑥𝑥 =
1

1 + exp −𝑥𝑥

𝑓𝑓𝑓 𝑥𝑥 = 𝑓𝑓(𝑥𝑥)(1 − 𝑓𝑓 𝑥𝑥)

Fig source

https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e

ReLU (Rectified Linear Unit) activation
• Maps negative values to zero; others pass through
• Most choice for internal layers in current deep networks
• Results in sparse network activations, and all positive values have gradient of 1

𝑓𝑓 𝑥𝑥 = max(0, 𝑥𝑥)

𝑓𝑓𝑓 𝑥𝑥 = 𝛿𝛿(𝑥𝑥 > 0)

Fig source

https://medium.com/@toprak.mhmt/activation-functions-for-deep-learning-13d8b9b20e

MLP Architectures: Hidden Layers and Nodes

• Number of internal (“hidden”) layers
– Without hidden layers, neural networks (a.k.a. perceptron or linear logistic regressor) can fit

linear decision boundaries
– With enough nodes in one hidden layer, any Boolean function can be fit but the number of nodes

required grows exponentially in the worst case (because the nodes can enumerate all joint
combinations)

– Every bounded continuous function can be approximated with one hidden sigmoid layer and one
linear output layer

– Any function can be approximated to arbitrary accuracy by a network with two hidden layers
with sigmoid activation (Cybenko 1988)

– Does it ever make sense to have more than two internal layers?

• Number of nodes per hidden layer (often called the “width”)
– More nodes means more representational power and more parameters

• Each layer has an activation function

Application Example: Backgammon (1992)
• 198 inputs: how many pieces on each

space
– Later versions had expert-defined

features
• 1 internal FC layer with sigmoid

activation
• Reinforcement learning: reward is

evaluation of game position or result
• Network competed well with world

experts, demonstrating power of ML

https://en.wikipedia.org/wiki/TD-Gammon Fig source

https://en.wikipedia.org/wiki/TD-Gammon
https://medium.com/clique-org/td-gammon-algorithm-78a600b039bb

Back-propagation: network example
Consider this simple network
• Two inputs
• Two nodes in hidden layer
• One output
• For now, linear activation

Output is a weighted sum of middle nodes

Each middle node is a weighted sum of inputs

Error function is squared error

Back-propagation: output weights

Apply chain rule to solve for
error gradient wrt 𝑤𝑤35

Take step in negative gradient
direction

Error gradient Input to weight

Back-propagation: internal weights

Chain rule is applied recursively,
since 𝑤𝑤13 affects 𝑓𝑓3 𝑥𝑥

Error gradient Contribution of this output to final output

Gradient of this output

Gradient update is product of
gradient to output, gradient of this
output to final output, and error
gradient of final output

What if f3 had ReLU activation?

Gradient is zero if x1<=0;
otherwise, same as for linear
activation

(before, with linear
activation)

Backpropagation: General Concept
• Each weight’s gradient based on one training sample is a product

of:
– Gradient of loss function (should final output have been higher or

lower)
– Gradient of prediction wrt activation (how this node’s activation is

affecting the final prediction)
– Gradient of activation wrt weight (how is the weight changing its node’s

activation)

2 Min Break Question

x1

h2 g2

g1h1

x2

out

w1 w2

w3w4 w5 w6 w7

w8 w9

w0

Error gradient wrt w8 = 2*(out-y)*(___*___ + ____*____) * ____

Error gradient wrt w2 = 2*(out-y)*(____) * _____

Assuming all linear layers (for simplicity), fill in the terms for the error gradients

w0 w9 w3 w7 x2

w3 h1

MLP Optimization by SGD
For each epoch 𝑡𝑡:

Split data into batches
𝜂𝜂 = 0.001 (or some schedule)
For each batch 𝑋𝑋𝑏𝑏:

1. Compute output
2. Evaluate loss
3. Compute gradients with backpropagation
4. Update the weights

What is the benefit and cost of going from a perceptron to MLP?

Benefit
1. Much greater expressivity, can model non-linear functions

Cost
1. Optimization is no longer convex, globally optimum solution no longer

guaranteed (or even likely)
2. Larger model = more training and inference time
3. Larger model = more data required to obtain a good fit

In summary: MLP has lower bias and higher variance, and additional error due
to optimization challenges

Demo: Part 2
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing

Multi-Layer Network Demo

http://playground.tensorflow.org/

Slide: Lazebnik
Try many layers with sigmoid vs relu

http://playground.tensorflow.org/

Another application example: mapping position/rays to color

• L2 loss
• ReLU MLP with 4 layers and 256 channels (nodes per layer)
• Sigmoid activation on output
• 256 frequency positional encoding

Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934

HW 2
https://docs.google.com/document/d/13vTEGx3fdfc4rtcF86xoUy
Xm6eHmuvys5ZkMbcEgK4s/edit

https://docs.google.com/document/d/13vTEGx3fdfc4rtcF86xoUyXm6eHmuvys5ZkMbcEgK4s/edit
https://docs.google.com/document/d/13vTEGx3fdfc4rtcF86xoUyXm6eHmuvys5ZkMbcEgK4s/edit

What to remember

• Perceptrons are linear prediction
models

• MLPs are non-linear prediction models,
composed of multiple linear layers with
non-linear activations

• MLPs can model more complex
functions, but are harder to optimize

• Optimization is by a form of stochastic
gradient descent

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Next class
• Deep learning

– Background
– AlexNet
– Adam Optimization
– Residual Networks

	MLPs and Backprop
	Review from the practice questions
	Multi-layer Perceptrons (MLPs)
	Perceptron
	Perceptron Update Rule
	Perceptron Optimization by SGD
	With different loss, the update changes accordingly
	Is a perceptron enough?
	Demo
	Perceptron is often not enough
	Multi-Layer Perceptron (MLP)
	Example MLP for MNIST Digits
	Linear activation
	Sigmoid activation
	ReLU (Rectified Linear Unit) activation
	MLP Architectures: Hidden Layers and Nodes
	Application Example: Backgammon (1992)
	Back-propagation: network example
	Back-propagation: output weights
	Back-propagation: internal weights
	What if f3 had ReLU activation?
	Backpropagation: General Concept
	2 Min Break Question
	MLP Optimization by SGD
	What is the benefit and cost of going from a perceptron to MLP?
	Demo: Part 2
	Multi-Layer Network Demo
	Another application example: mapping position/rays to color
	HW 2
	What to remember
	Next class

