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Support Vector Machines (SVMs)

* Developed in the 1990’s by Vapnik and colleagues at Bell Labs
based on statistical learning theory

* One of the most popular learning techniques until deep
learning resurgence

 What is interesting about SVMs

— Generalization properties, including achieving a margin and
structural risk minimization

— Extension to non-linear classifier via kernels

— Dual form that shows how linear classifiers can be seen as a
weighted average of training examples

— Optimization via stochastic gradient descent, also used for neural
networks



This lecture

1. Linear SVM

2. Kernels and Non-Linear SVM

3. SVM Optimization with Stochastic Gradient Descent



What is the best linear classifier?

* Logistic regression

— Maximize expected likelihood of
label given data

— Every example contributes to loss X

* SVM

— Make all examples at least
minimally confident

— Base decision on a minimal set of

x1
examples



SVM Terminology
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SVMs minimize w! w while preserving a margin of 1

Optimized SVM Model

x1

Decision boundary depends only on
“support vectors” (circled)

Optimized Linear Logistic Regression Model

X2

x1

Minimizes the sum of logistic error on all
samples, so boundary should be further
from dense regions



Why SVMs achieve good generalization

Maximizing the margin — if all examples are far

from the boundary, it is less likely that some test

sample will end up on the wrong side of the

boundary

— If classes are linearly separable, the scores can be

arbitrarily increased by scaling w, so optimization is
expressed as minimize w' w while preserving a
margin of 1

Dependence on few training samples — most
training data points could be removed without
affecting the decision boundary, which gives an
upper bound on the generalization error

E.g., expected test error is <= than the smaller of:
a. % of training samples that are support vectors

b. D?/m?/N, the diameter of the data compared to

the margin divided by the number of examples
(see proof)

Optimized SVM Model

x1


https://ocw.mit.edu/courses/18-465-topics-in-statistics-statistical-learning-theory-spring-2007/0d49e3d6b669cbbb13ef85b0e21357a8_l4.pdf

SVM in Linearly Separable Case

Prediction Optimization

* . 2
y,, = sign(wTx,, + b) W = argvf]nmllw”
subject to

yv,(Wl'x, + b) = 1 for all n

Here, y € {—1,1} which is a common convention that simplifies notation for binary classifiers



SVM in Non-Linearly Separable Case

Prediction

y,, = sien(w!x,, + b)

Optimization Known as “hinge loss”

/ Penalty is paid if margin is less than 1

N
w* = argmin| ||w]|?+C z max (0,1 —y,,(w'x,, + b))
n

w

Here, y € {—1,1} which is a common convention that simplifies notation for binary classifiers



penalty (loss) size
A

N 0 —
incorrectly classified ' correctly classified

. distance from boundary
Fig source


https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1

Sometimes non-linear optimization is written in terms of
“slack variables”

N
w* = argmin ||W||2+CE max(0,1 —y,(w'x,, + b))
n

w

IS equivalent to

* ol .14 R N slack
. : y -
*ele|a aa min_ |[w|[> 4+ C) g .~ variables
A weRd £,eRT ;
subject to
\ yi (Wixi+b)>1—g fori=1...N

Pay slack penalty



Slide credit: Zisserman [link]
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https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Representer theorem

Optimal weights for many L2-regularized classification and
regression functions can be expressed as a weighted
combination of training examples

* —
W = z anynxn

n

a, = 0,y,€ {—1,1}

Conditions apply, e.g. function must be regularized in a Reproducing Kernel Hilbert Space (details)

Does not apply to L1 weight regularization because that can’t be expressed as a dot product of weights


https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/04c.representer-theorem.pdf

Primal vs. Dual Formulations of SVM

Prediction Training Objective
Primal N
fx)=wix+b w* = argmin ||W||2+Cz max(0,1 —y,(wl'x,, + b))
w n
Dual
% 1
f(x) = Tnatayn(¥h) +b o = argmax ¥ a; — > 3 ey v (T x) |
a

st. 0<aq;<CVi and );a;y; =0

Primal: parameter for each feature
Dual: parameter for each training example




For SVM, « is sparse (most values are zero)
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Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

But what if the decision boundary is not even close to linear?

* introduce slack vanables
® 9 AAA
o ©®eo |A A -y
®oehe| aaar, w@IF—Q?T@?wLHWH +C ZEE
® 9 A A e R A
oo ®|AA .
e ®| A AA subject to
A
yi(Wixi+b) >1—¢ fori=1...N
A A . - .
ad T A LA * linear classifier not appropriate
o, A
e s 7
®ce o AAA
AAA‘A‘

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Solution 1: use polar coordinates

 Data is linearly separable in polar coordinates

 Acts non-linearly in original space

¢:($1)—>(T) R? — R?
:132 9

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Solution 2: map data to higher dimension

4
4 )
CDZ(xl)—} xé R2 —» R3
2 V2x125
A
X A A A
A
A . A
A o o e A
0 A .', N —
L ] .. A
A ¢ N
A
A, A A
| > 1
0 Xy

* Data is linearly separable in 3D

* This means that the problem can still be solved by a linear classifier
Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

SVM classifiers in a transformed feature space

¢ f(x) =0
! Rd A 4 a RD
CoTe P R \
. . .-.",. A . I ,
A, * : A >
d:x — P(x) RY — RD ]

|l earn classifier linear in w for RD:

d(x) is a feature map

f(x)=w'd(x)+0b

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Primal Classifier in transformed feature space

Classifier, with w € RL:

f(x) =w'd(x)+0
Learning, for w ¢ RY

j\?
min_ [|w][* 4+ Y max (0,1 — y; f(x;))
2

wcRD
e Simply map x to ®(x) where data is separable
e Solve for w in high dimensional space RL

o If D >> d then there are many more parameters to learn
for w. Can this be avoided?

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Dual Classifier in transformed feature space

Classifier:
N
fx) = Y auix;'x+0b
i
N
= f(x) = > oy P(x)  P(x) + b
i
Learning:
L T
MaxXx Z ; — — Z QLY YEX; X
a; >0 ; 2 ik
1
—  MaX Q; — — Z o:jakyjykdb(xj)TdD(X;‘,_)
a; >0 = 2 ik
subject to

0<a; <C for Vi, and) ay; =0

2

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Dual Classifier in transformed feature space

e Note, that ®(x) only occurs in pairs CI)(Xj)TCID(X.?j)

e Once the scalar products are computed, only the N dimensional
vector @ needs to be learnt; it is not necessary to learn in the
D dimensional space, as it is for the primal

o Write k(x;,x;) = CD(XJ:)TCD(XZ'). This is known as a Kernel

Classifier:
N
f(x) =) oy k(x;,x) + b
7
Learning:
max Z a; — — Z a;aryiyr k(x;, Xz)
a; >0
Jk
subject to

0<a; <C for Vi, and ) ayy; =0

2

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Special transformations

T ]
d):(xl)—rr x5 R2 — RS
2 V 2z
52
>
d(x) P(z) = (:c%,:c%,\/amlmg) z5
\/52:12:2

= 177 + 2375 + 2z1a021 20

= (2121 + 2222)°

— (XTZ)Q

Kernel Trick

e Classifier can be learnt and applied without explicitly computing ®(x)

e All that is required is the kernel k(x,z) = (x'2)?

e Complexity of learning depends on N (typically it is O(N3)) not on D

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Example kernels

e Linear kernels k(x,x') = x'x/
: N — T fd'
e Polynomial kernels k(x,x") = (1 + x x) for any d > 0O
— Contains all polynomials terms up to degree d
e Gaussian kernels k(x,x’) = exp (—Hx — X"Hz/Qaz) for c >0

— Infinite dimensional feature space

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

SVM classifier with Gaussian kernel

N = size of training data

N
f(x) = Z o;yik(X;,Xx) + b

I\

weight (may be
zero)

support vector

Gaussian kernel k(x,x’) = exp (—||x — X’||2/2c72)
Radial Basis Function (RBF) SVM

N
F(x) = aiexp (=[x — xi|*/202) + b
1
Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Decreasing C gives a wider soft margin
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https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Decreasing sigma makes it more like nearest neighbor
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https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Kernel Trick - Summary

» Classifiers can be learnt for high dimensional features spaces, without
actually having to map the points into the high dimensional space

» Data may be linearly separable in the high dimensional space, but not
linearly separable in the original feature space

» Kernels can be used for an SVM because of the scalar product in the dual
form, but can also be used elsewhere — they are not tied to the SVM formalism

Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Stretch break

* |f you were to remove a support vector from the training set,
would the decision boundary change?

e After break

— Application example

— Pegasos — SGD optimization X2

x1



Example application of SVM: Dalal-Triggs 2005

Input
image

Normalize
gamma &

colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

* Detection by scanning window

* Resize image to multiple scales and extract overlapping windows

» Classify each window as positive or negative
* Very highly cited (40,000+) paper, mainly for HOG
* One of the best pedestrian detectors for several years

Contrast normalize
over overlapping
spatial blocks

Collect HOG s
over detection
window

Linear
SVM

Person/
—» non—person
classification

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf



https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Example application of SVM: Dalal-Triggs 2005

Input
image

Normalize Compute Weighted vote Contrast normalize Collect HOG’s
—» gamma & —» aradients —>»| into spatial &  |—»| over overlapping |[—| over detection > SVM
colour orientation cells spatial blocks window

FHEE LM
() (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel™
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) 1t's computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

* Very highly cited (40,000+) paper, mainly for HOG
* One of the best pedestrian detectors for several years

Person/

Linear| , ,,,n person

classification



Example application of SVM: Dalal-Triggs 2005

Input
image

miss rate

Normalize

gamma &
colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

DET - different descriptors on MIT database

Contrast normalize
over overlapping
spatial blocks

Collect HOG s
over detection
window

Linear
SVM

Person/
—» non—person
classification

DET - different descriptors on INRIA database
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Using SVMs

* Good broadly applicable classifier
— Strong foundation in statistical learning theory
— Works well with many weak features
— Requires parameter tuning for C

— Non-linear SVM requires defining a kernel, and slower optimization/prediction
* RBF: related to neural networks, nearest neighbor (requires additional tuning)
* Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
e Can learn a kernel function

* Negatives
— Feature learning is not part of the framework (vs trees and neural nets)
— Slow training (especially for kernels) — until Pegasos!



Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
(2011)

111111%|W|2 = Y owi(x.y)) SVM problem that we want to solve
w ; m o« . . .
(x,y)ES (Minimize weights square + sum of
((w; (x,y)) = max{0,1—y(w,x)} hinge losses on all samples)
. Ao 2 - .
flwiie) = Slwll* + 6(w; (xi,, 93,) Problem in terms of one sample
Vi=Aws — Lyi, (We. X4,) < 1] yi, X, Gradient in terms of one sample

- Direction to move to improve solution

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf



https://home.ttic.edu/%7Enati/Publications/PegasosMPB.pdf

Gradient Descent Visualization

Figure source


https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Pegasos algorithm: Stochastic Gradient Descent (SGD)

INPUT: S, AT Notation

INITIALIZE: Set w1 = 0

ForR t=1,2,...,1 S: training set
Choose i € {1, ...,|S]|} uniformly at random. 1: regularization weight
1 . _ L
Set e = x3 T: number iterations

Ifyi, (We,x;,) < 1, then:
Set Wil < (1 — 'T]t)\)Wt + Mt Yi, Xy .
Else (if y;, (w¢, x4,) > 1): x;,: features for example i,

Set wip1 <= (1 — ned)wy Vi, label for example i;

N¢: step size (“learning rate”)

w;: model weights

OUTPUT: W41




Pegasos with mini-batch

e Calculating gradient based on multiple examples reduces
variance of gradient estimate

k: batch size
INPUT: S\, Tk m: number of training samples
INITIALIZE: Set w1 = 0 Ay batch of examples
For t=1,2,...,T A examples within margin
Choose A: C [m], where | A¢| = k, uniformly at random
Set 4? — {3, e A 1y <Wt?Xi_> < 1} S: training set
Set 7y = AL A: regularization weight
' t __ _ . .
Set wi1 + (1 —nt N)wy + 1% ZzEAj Vi X T: rlumber |terat|ons
« w;: model weights
x;: features for example i
OUTPUT: W4 q y;: label for example i
1. step size (“learning rate”)




SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

Hinge L1 regression

Margin loss between scores of
most likely and correct label

Variant of a logistic loss

Loss function

((z,yi) = max{0,1 — y;z}

Subgradient

—yix; if yiz <1
Vit = .

0 otherwise

l(z,y;) = log(l + e~ ¥i%)

— Yy .
Vi = — ez Xi

((z,y;) = max{0, |y; — z| — €}

X if z—y; > ¢
vi=1¢ —x; if y;j —z > ¢€
0 otherwise

((z,y:) = max oy, vi) — zy; + 2y

vt = o(xi,9) — d(xi, yi)

where §j = arg max §(y, yi) — zy, + 2y
y

€(z,yi) = log (1 + Z pzr—zyi)

r#EY;

Vi = Zr‘ pr(:)(}{g r] — CJ'(X“I y‘t)

where p,. = 7/ Z e
3

z is the score
for y=1



SGD is fast compared to other optimization approaches

astro-ph

primal objective

CCAT

classification error%

covl
!
| —— Pegasos
'| ---. SDCA
A —e— SVM-Perf
it -e LASVM

Fig. 4 Comparison of linear SVM optimizers. Primal suboptimality (top row) and testing classification error
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(bottom row), for one run each of Pegasos, stochastic DCA, SVM-Perf, and LASVM, on the astro-ph (left).
CCAT (center) and covl (right) datasets. In all plots the horizontal axis measures runtime in seconds.

Dataset | Traming Size | Testing Size | Features | Sparsity A
astro-ph 20882 32487 99757 0.08% | 5x107?
CCAT 781265 23149 47236 0.16% 107%
covl 522911 58101 54 22.22% 1078

SDCA = stochastic dual

coordinate descent, another form
of sub-gradient optimization that
chooses learning rate

dynamically




Experiments with Linear SVM

Dataset | Tramming Size | Testing Size | Features | Sparsity A
astro-ph 29882 32487 99757 0.08% | 5x 10~?
CCAT 781265 23149 47236 0.16% 10=4
covl 522911 58101 54 22.22% | 107°
Training time and test error
Dataset Pegasos SDCA SVM-Perf LASVM
astto-ph | 0.04s (3.56%) | 0.03s(3.49%) | 0.1s(3.39%) | b4s (3.65%)
CCAT | 0.165(6.16%) | 0.36s(6.57%) | 3.6s(5.93%) > 18000s
covl | 0.325(23.2%) | 0.20s(22.9%) | 4.25(23.9%) | 210s (23.8%)




Experiments using Gaussian kernel SVM (see paper for kernelized Pegasos algorithm)

Dataset | Traming Size | Testing Size ¥ A
Reuters 7770 3299 1 [ 1.29%x 107"
Adult 32562 16282 0.05 | 3.07 x 10~
USPS 7329 1969 2 | 1.36x107*
MNIST 60000 10000 0.02 [ 1.67 x 1077
Dataset Pegasos SDCA SVM-Light LASVM
Reuters | 155 (2.91%) 135 (3.15%) | 4.1s(2.82%) | 4.7s(3.03%)
Adult | 30s(15.5%) 48s(15.5%) | 59s(15.1%) | 1.5s(15.6%)
USPS 120s (0.457%) 215 (0.508%) 3.35(0.457%) 1.85(0.457%)
MNIST 4200s (0.6%) 1800s (0.56%) 290s (0.58%) 280s (0.56%)




Effect of mini-batch size
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Fig. 7 The effect of the mini-batch size on the runtime of Pegasos for the astro-ph dataset. The first plot
shows the primal suboptimality achieved for certain fixed values of overall runtime k7", for various values of
the mini-batch size k. The second plot shows the primal suboptimality achieved for certain fixed values of k.
for various values of kT'. Very similar results were achieved for the CCAT dataset.



Effect of sampling procedure: randomly ordered epochs is best

primal suboptimality (log scale)

0.1

0.01

0.001

le—4

. ]
= TUniformly random

= = - New permutation every epoch
—8— Same permutation each epc-ch‘

Sampling with replacement

T~

\ Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set

epochs



Learning rate comparison

—S-Pegasos Zhang uses fixed learning rate
—/hang |7
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Plots show error over iterations for
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Pegasos: take-ways and surprising facts

* SGD is very simple and effective optimization algorithm — step
toward better solution based on a small sample of training data

* Not very sensitive to mini-batch size (but larger batches can be
much faster with parallel processing)

* The same learning schedule is effective across several problems

* Alarger training set makes it faster to obtain the same test
performance



Next week

* Neural networks
— Multi-layer perceptrons (MLP)
— Deep networks
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